CuNb3O8: A p-Type Semiconducting Metal Oxide Photoelectrode.

J Phys Chem Lett

Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States.

Published: June 2012

AI Article Synopsis

  • A new p-type CuNb3O8 polycrystalline photoelectrode was studied, showing indirect and direct bandgap sizes of 1.26 eV and 1.47 eV, respectively.
  • Under visible-light irradiation, it produced a photocurrent of about 6-7% efficiency while facilitating hydrogen evolution.
  • The material demonstrated promising properties for solar energy conversion, with notable hole mobility and favorable conduction band energy for water reduction.

Article Abstract

A new p-type CuNb3O8 polycrystalline photoelectrode was investigated and was determined to have indirect and direct bandgap sizes of 1.26 and 1.47 eV, respectively. The p-type polycrystalline film could be prepared on fluorine-doped tin oxide glass and yielded a cathodic photocurrent under visible-light irradiation (λ > 420 nm) with incident photon-to-current efficiencies of up to ∼6-7% and concomitant hydrogen evolution. A Mott-Schottky analysis yielded a flat band potential of +0.35 V versus RHE (pH = 6.3) and a calculated p-type dopant concentration of ∼7.2 × 10(15) cm(-3). The conduction band energies are found to be negative enough for the reduction of water under visible light irradiation. A hole mobility of ∼145 cm(2)/V·s was obtained from J(I)-V(2) measurements using the Mott-Gurney relation, which is ∼50% higher than that typically found for p-type Cu2O. DFT-based electronic structure calculations were used to probe the atomic and structural origins of the band gap transitions and carrier mobility. Thus, a new p-type semiconductor is discovered for potential applications in solar energy conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz300477rDOI Listing

Publication Analysis

Top Keywords

p-type
5
cunb3o8 p-type
4
p-type semiconducting
4
semiconducting metal
4
metal oxide
4
oxide photoelectrode
4
photoelectrode p-type
4
p-type cunb3o8
4
cunb3o8 polycrystalline
4
polycrystalline photoelectrode
4

Similar Publications

Thermoelectric (TE) devices recycle high-temperature waste-heat efficiently, but waste-heat below sub-250 °C remains uncaptured. As promoting full autonomy for the Internet of Things (IoT), we present a TE generator using multilayered pseudo--type GaN/TiN/GaN and -type TiO/TiN/TiO TE one-leg devices, where heterozygous of outer/inner layers demonstrates the functions of a colossal Seebeck coefficient ( = +15,000 μV K) with phonon-assist hopping, controlling by the porosity for reducing thermal conductivity (κ), a high electric conductivity (σ) with reducing κ by outer layers, and σ- coexistence over singular curve by the asymmetric electrode configuration. is elucidated hopping among inner grains and the space charge (SC) grain boundary (GB) of 100 μm regions within Debye length.

View Article and Find Full Text PDF

Constructing n/n Type Perovskite Homojunctions to Achieve High-Efficiency and Stable Printable Mesoscopic Perovskite Solar Cells.

Small

January 2025

Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, 541004, China.

In recent years, carbon-based printable mesoscopic perovskite solar cells (p-MPSCs) without hole transport layers have garnered considerable interest because of their outstanding benefits in terms of stability and cost. However, the use of carbon electrodes instead of hole transport materials and noble metal electrodes leads to energy level mismatch, which limits the power conversion efficiency (PCE) of p-MPSCs. In this work, a molecular doping strategy is proposed employing cyclopentylmethanamine to passivate surface and subsurface crystal defects in perovskite layers while inducing an energy shift toward the p-type in the perovskite region within carbon electrodes.

View Article and Find Full Text PDF

In the past two decades, organic solar cells (OSCs) have begun to attract attention as the efficiency of inorganic solar cells gradually approaches the theoretical limit. In the early development stage of OSCs, p-type conjugated polymers and n-type fullerene derivatives were the most commonly used electron donors and acceptors. However, with further research, the shortcomings of fullerene materials have become increasingly apparent.

View Article and Find Full Text PDF

In this work, we investigate the electronic and magnetic properties of the InSe monolayer enriched by doping with IVA-group (Si and Ge) and VA-group (P and As) atoms. Both In and Se sublattices are considered as doping sites to realize n- and p-type doping (X@InSe and X@InSe systems, X = Si, Ge, P, and As), respectively. The pristine InSe monolayer is an indirect gap semiconductor with a band gap of 1.

View Article and Find Full Text PDF

A strong n-type perovskite layer is crucial in achieving high open-circuit voltage (V) and power conversion efficiency (PCE) in the p-i-n solar cells, as the weak n-type perovskites result in a loss of V, and the p-type perovskites contain numerous electron traps that cause the severe carrier recombination. Here, three types of perylene diimide (PDI) based small molecule dopants with different dimensions, including 1D-PDI, 2D-PDI, and 3D-PDI are designed, to produce heavier n-type perovskites. The PDI-based molecules with Selenium atoms have a strong electron-donating ability, effectively enlarging the quasi-Fermi level splitting within the perovskites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!