Infrared Photodissociation Spectroscopy of the Ni(O2)n(+) (n = 2-4) Cation Complexes.

J Phys Chem A

Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200433, China.

Published: September 2015

The infrared spectra of mass-selected Ni(O2)n(+) (n = 2-4) and their argon-tagged complexes are measured by infrared photodissociation spectroscopy in the gas phase. The experimental spectra provide distinctive patterns allowing the determination of their geometric and electronic structures by comparison with the simulated vibrational spectra from density functional theory calculations. The [Ni(O2)2Ar2](+) cation complex was determined to have D2h symmetry involving a Ni(O2)2(+) core ion with two equivalent superoxide ligands side-on bound to a Ni(3+) cation center. The higher Ni(O2)3(+) and Ni(O2)4(+) cation complexes were determined to have structures with a chemically bound Ni(O2)2(+) core ion that is weakly coordinated by neutral O2 molecule(s).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.5b07089DOI Listing

Publication Analysis

Top Keywords

infrared photodissociation
8
photodissociation spectroscopy
8
nio2n+ 2-4
8
cation complexes
8
nio22+ core
8
core ion
8
spectroscopy nio2n+
4
cation
4
2-4 cation
4
complexes infrared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!