LC3B, a Protein That Serves as an Autophagic Marker, Modulates Angiotensin II-induced Myocardial Hypertrophy.

J Cardiovasc Pharmacol

*Department of Cardiology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; †Department of Cardiology, Nanhai Hospital Affiliated to Southern Medical University, Foshan, Guangdong, China; and ‡Department of Laboratory Medicine, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Published: December 2015

LC3B is a marker of autophagic activity, and growing evidence supports its importance in myocardial hypertrophy. Thus, regulating LC3B expression may provide an important avenue to inhibit autophagy and protect against or inhibit pathological myocardial hypertrophy. To address this question, we investigated the effects of altering LC3B mRNA expression and autophagic activity in the setting of cardiomyocyte hypertrophy. In an in vitro angiotensin II (Ang II)-induced cardiomyocyte hypertrophy model, LC3B mRNA and protein expression was increased and there was activation of cardiomyocyte autophagy, which was assessed by transmission electron microscopy and flow cytometry. LC3B cDNA transfection also resulted in an upregulation of autophagic activity, whereas downregulation of autophagic activity was observed with knockdown of LC3B expression. Induction of LC3B expression was shown to further exacerbate Ang II-stimulated cardiomyocyte hypertrophy, whereas inhibition of LC3B expression inhibited the Ang II-stimulated cardiomyocyte hypertrophy (as assessed through cardiomyocyte morphology and expression of ANP and β-MHC). This study demonstrated that LC3B modulates the Ang II-induced cardiomyocyte hypertrophy in cultured neonatal rat ventricular cardiomyocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1097/FJC.0000000000000306DOI Listing

Publication Analysis

Top Keywords

cardiomyocyte hypertrophy
20
autophagic activity
16
lc3b expression
16
myocardial hypertrophy
12
lc3b
10
hypertrophy
8
lc3b mrna
8
ang ii-induced
8
ii-induced cardiomyocyte
8
ang ii-stimulated
8

Similar Publications

Syringaldehyde Alleviates Cardiac Hypertrophy Induced by Hyperglycemia in H9c2 Cells Through GLP-1 Receptor Signals.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacy, College of Pharmacy and Health Care, Tajen University, Pingtung 90741, Taiwan.

Cardiac hypertrophy is a significant complication of diabetes, often triggered by hyperglycemia. Glucagon-like peptide-1 (GLP-1) receptor agonists alleviate cardiac hypertrophy, but their efficacy diminishes under GLP-1 resistance. Syringaldehyde (SA), a natural phenolic compound, may activate GLP-1 receptors and mitigate hypertrophy.

View Article and Find Full Text PDF

Baicalin Mitigates Cardiac Hypertrophy and Fibrosis by Inhibiting the p85a Subunit of PI3K.

Biomedicines

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Heart failure (HF) is a serious public health concern. Baicalin is one of the major active ingredients of a traditional Chinese herbal medicine, Huang Qin, which is used to treat patients with chest pain or cardiac discomfort. However, the underlying mechanism(s) of the cardioprotective effect of baicalin are still not fully understood.

View Article and Find Full Text PDF

: Aging is associated with structural and functional changes in the heart, including hypertrophy, fibrosis, and impaired contractility. Cellular mechanisms such as senescence, telomere shortening, and DNA damage contribute to these processes. Nuclear factor kappa B (NF-κB) has been implicated in mediating cellular responses in aging tissues, and increased NF-κB expression has been observed in the hearts of aging rodents.

View Article and Find Full Text PDF

Astragali Radix-Notoginseng Radix et Rhizoma medicine pair prevents cardiac remodeling by improving mitochondrial dynamic balance.

Chin J Nat Med

January 2025

Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Astragali Radix (AR) and Notoginseng Radix et Rhizoma (NR) are frequently employed in cardiovascular disease treatment. However, the efficacy of the AR-NR medicine pair (AN) in improving cardiac remodeling and its underlying mechanism remains unclear. This study aimed to evaluate AN's cardioprotective effect and potential mechanism on cardiac remodeling using transverse aortic constriction (TAC) in mice and angiotensin II (Ang II)-induced neonatal rat cardiomyocytes (NRCMs) and fibroblasts in vitro.

View Article and Find Full Text PDF

Two billion people worldwide suffer from anemia, which can lead to the onset of cardiac disorders; nevertheless, the precise mechanisms remain unclear. There are at least three distinct mechanisms by which iron deficiency (ID) contributes to the development of cardiac disorders. First, ID increases concentrations of intact fibroblast growth factor-23 (iFGF-23), which promotes left ventricular hypertrophy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!