Microphthalmia-associated transcription factor regulates skin melanoblast migration by repressing the melanoma cell adhesion molecule.

Exp Dermatol

Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.

Published: January 2016

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.12835DOI Listing

Publication Analysis

Top Keywords

microphthalmia-associated transcription
4
transcription factor
4
factor regulates
4
regulates skin
4
skin melanoblast
4
melanoblast migration
4
migration repressing
4
repressing melanoma
4
melanoma cell
4
cell adhesion
4

Similar Publications

Melanogenesis, the biological process responsible for melanin synthesis, plays a crucial role in determining skin and hair color, photoprotection, and serving as a biomarker in various diseases. While various factors regulate melanogenesis, the role of fatty acids in this process remains underexplored. This study investigated the anti-melanogenic properties of 10(E)-pentadecenoic acid (10E-PDA) through both in silico and in vitro analyses.

View Article and Find Full Text PDF

Background: Melanoma cells frequently dedifferentiate in response to inflammation which can increase responses to certain cytokines. Interferon-γ (IFNγ) is an integral part of the anti-tumor immune response and can directly induce both differentiational changes and expression of immunosuppressive proteins in melanoma cells. How the differentiation status of melanoma cells affects IFNγ responses remains unclear.

View Article and Find Full Text PDF

Programmed cell death protein ligand-1 (PD-L1) and major histocompatibility complex I (MHC-I) are key molecules related to tumor immune evasion and resistance to programmed cell death protein 1 (PD-1)/PD-L1 blockade. Here, we demonstrated that the upregulation of all miRNAs in the miR-23a/27a/24 - 2 cluster was correlated with poor survival, immune evasion and PD-1/PD-L1 blockade resistance in patients with non-small cell lung cancer (NSCLC). The overexpression of all miRNAs in the miR-23a/27a/24 - 2 cluster upregulated PD-L1 expression by targeting Cbl proto-oncogene B (CBLB) and downregulated MHC-I expression by increasing the level of eukaryotic initiation factor 3B (eIF3B) via the targeting of microphthalmia-associated transcription factor (MITF).

View Article and Find Full Text PDF

Worldwide, congenital deafness and pigmentation disorders impact millions with their diverse manifestations, and among these genetic conditions, mutations in the Microphthalmia-associated transcription factor (MITF: OMIM#156845) gene are notable for their profound effects on melanocyte development and auditory functions. This study reports a novel porcupine model exhibiting spontaneous deafness and pigmentation abnormalities reminiscent of human Waardenburg Syndrome Type 2 (WS2: OMIM#193510). Through phenotypic characterization, including coat color, skin, eye morphology, and auditory brainstem response (ABR) assessments, we identified hypopigmentation and complete deafness in mutant porcupines.

View Article and Find Full Text PDF

Management of translocation carcinomas of the kidney.

Transl Cancer Res

November 2024

Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD, USA.

Microphthalmia-associated transcription factor family translocation renal cell carcinoma (MiT-tRCC) stands out as a rare subtype of kidney cancer with distinct biological features compared to other kidney cancer subtypes. It encompasses TFE3-rearranged RCC (also known as Xp11 translocation RCC) and TFE-rearranged translocations RCC, although multiple new fusion partners were identified. Traditionally thought to primarily affect children and young adults, more cases of MiT-tRCC are being identified in adults.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!