Recently, the synthesis of fine TiO2 paste with organic-free binder emerged as an indispensable technique for plastic photovoltaics due to the low temperature processing requirement. In this study, pure anatase TiO2 nanoparticles and organic-free TiO2-sol were successfully synthesized individually in organic-free solution. By mixing the pure anatase TiO2 with the newly developed TiO2-sol binder, mechanically robust and well-interconnected TiO2 films were prepared via UV-irradiation at low temperature for applications in plastic dye-sensitized solar cells (p-DSSCs). The structural, electrical, and photovoltaic properties of the films as well as the devices were investigated by various techniques. The dye-loading amount of the obtained film is 2.6 times that of the P25 electrodes. As revealed by electrochemical impedance spectroscopy results, the film derived from the as-prepared anatase TiO2 paste (A-TiO2) exhibits much smaller charge transport resistance and lower electron recombination rate than the P25 film, while the introduction of TiO2-sol into the paste can further remarkably decrease the resistance of the produced film (AS-TiO2). The p-DSSCs employing AS-TiO2 photoanode yield a high efficiency up to 7.51%, which is 86% higher than the P25 reference cells and also 31% higher than the A-TiO2 cell. As a proof of concept, the newly developed AS-TiO2 paste was also applied to low temperature processed perovskite solar cells (PSCs), and a promising high efficiency up to 9.95% was achieved.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5b05672 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Grundlagen von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.
View Article and Find Full Text PDFChem Asian J
January 2025
Kyoto University - Uji Campus: Kyoto Daigaku - Uji Campus, Institute for Chemical Research, Gokasho, 611-0011, Uji, JAPAN.
The development of efficient electron-collecting monolayer materials is desired to lower manufacturing costs and improve the performance of regular (negative-intrinsic-positive, n-i-p) type perovskite solar cells (PSCs). Here, we designed and synthesized four electron-collecting monolayer materials based on thiazolidinone skeletons, with different lowest-unoccupied molecular orbital (LUMO) levels (rhodanine or thiazolidinedione) and different anchoring groups to the transparent electrode (phosphonic acid or carboxylic acid). These molecules, when adsorbed on indium tin oxide (ITO) substrates, lower the work function of ITO, decreasing the energy barrier for electron extraction at the ITO/perovskite interface and improving the device performance.
View Article and Find Full Text PDFChemistry
January 2025
Friedrich-Alexander-Universität Erlangen-Nürnberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg, Department of Materials Science and Engineering, Institute of Materials for Electronics and Energy Technology (i-MEET), Martensstraße 7, 91058, Erlangen, GERMANY.
Perovskite solar cells (PSCs) have recently achieved over 26% power conversion efficiency, challenging the dominance of silicon-based alternatives. This progress is significantly driven by innovations in hole transport materials (HTMs), which notably influence the efficiency and stability of PSCs. However, conventional organic HTMs like PTAA, although highly efficient, suffer from thermal degradation, moisture ingress, and high cost.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Agricultural University, College of Materials and Energy, CHINA.
Carbon-based perovskite solar cells (C-PSCs) have the advantages of high stability and low cost, but their mean efficiency has become an obstacle to commercialization. Defects, which are widely distributed on the surface and bulk of films, are an important factor in C-PSCs for low efficiency. The conventional post-treatment method through forming a low-dimensional (LD) perovskite layer usually fails in manipulating the bulk defects.
View Article and Find Full Text PDFSmall
January 2025
School of Electronics and Information, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, 710129, China.
As organic solar cells (OSCs) achieve notable advancements, a significant consensus has been highlighted that the device performance is intricately linked to the active layer morphology. With conjugated molecules being widely employed, intermolecular interactions exert substantial influence over the aggregation state and morphology formation, resulting in distinct molecular packing motifs, also known as polymorphism. This phenomenon is closely associated with processing conditions and exerts a profound impact on functional properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!