Experimental Objective: To provide a safe, simple, relatively inexpensive, fast, accurate way of quantifying balance performance either in isolation, or in the face of challenges provided by 3D high definition moving visual stimuli as well as by the proprioceptive challenge from standing on a foam pad. This method uses the new technology of the Wii balance board to measure postural stability during powerful, realistic visual challenges from immersive virtual reality.

Limitations Of Current Techniques: Present computerized methods for measuring postural stability are large, complex, slow, and expensive, and do not allow for testing the response to realistic visual challenges.

Protocol: Subjects stand on a 6 cm thick, firm, foam pad on a Wii balance board. They wear a fast, high resolution, low persistence, virtual reality head set (Oculus Rift DK2). This allows displays of varying speed, direction, depth, and complexity to be delivered. The subject experiences a visual illusion of real objects fixed relative to the world, and any of these displays can be perturbed in an unpredictable fashion. A special app (BalanceRite) used the same procedures for analyzing postural analysis as used by the Equitest.

Power Of The Technique: Four simple "proof of concept" experiments demonstrate that this technique matches the gold standard Equitest in terms of the measurement of postural stability but goes beyond the Equitest by measuring stability in the face of visual challenges, which are so powerful that even healthy subjects fall. The response to these challenges presents an opportunity for predicting falls and for rehabilitation of seniors and patients with poor postural stability.

Significance For The Field: This new method provides a simpler, quicker, cheaper method of measurement than the Equitest. It may provide a new mode of training to prevent falls, by maintaining postural stability in the face of visual and proprioceptive challenges similar to those encountered in life.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4515556PMC
http://dx.doi.org/10.3389/fneur.2015.00164DOI Listing

Publication Analysis

Top Keywords

postural stability
16
virtual reality
12
foam pad
8
wii balance
8
balance board
8
realistic visual
8
visual challenges
8
stability face
8
face visual
8
visual
6

Similar Publications

Neuromuscular Strategies in Dominant and Non-Dominant Legs in Dancers During Dynamic Balance Tasks.

J Dance Med Sci

January 2025

Frontier Research Institute of Convergence Sports Science, College of Educational Sciences, Yonsei University, Seoul, Korea.

Ballet-based dance training emphasizes the equal development of both legs. However, dancers often perceive differences between their legs during balance or landing. There still needs to be more consensus on the functional difference between dominant (D) and non-dominant legs (ND).

View Article and Find Full Text PDF

Top-view systems for lameness detection have advantages such as easy installation and minimal impact on farm work. However, the unclear lameness motion characteristics of the back result in lower recognition accuracy for these systems. Therefore, we analysed the compensatory behaviour of cows based on top-view walking videos, extracted compensatory motion features (CMFs), and constructed a model for recognising lameness in cows.

View Article and Find Full Text PDF

Effects of kinesio taping on lower limb biomechanical characteristics during dynamic postural control tasks in individuals with chronic ankle instability.

PLoS One

January 2025

Key Laboratory of Sports Engineering of General Administration of Sport of China, Wuhan Sports University, Wuhan, Hubei Province, China.

Purpose: Previous studies have demonstrated significant biomechanical differences between individuals with chronic ankle instability (CAI) and healthy controls during the Y-balance test. This study aimed to examine the effects of kinesio taping (KT) on lower limb biomechanical characteristics during the Y-balance anterior reach task in individuals with CAI.

Methods: A total of 30 participants were recruited, comprising 15 individuals with CAI and 15 healthy controls.

View Article and Find Full Text PDF

Background: Chronic nonspecific neck pain (CNSNP) is a common musculoskeletal disorder, particularly in the elderly, leading to reduced cervical muscle strength, impaired functional balance, and decreased postural stability. This study investigated the correlation between cervical muscle strength, functional balance, and limits of stability (LOS) in elderly individuals with CNSNP. Additionally, it assessed the moderating effect of pain severity on the relationship between cervical muscle strength and these balance outcomes.

View Article and Find Full Text PDF

Characterizing the vestibular control of balance in the intrinsic foot muscles.

Gait Posture

December 2024

School of Health and Exercise Sciences, The University of British Columbia Okanagan, Kelowna, British Columbia, Canada. Electronic address:

Background: To maintain standing balance, vestibular cues are processed and integrated with other sensorimotor signals to produce appropriate motor adjustments. Whole-body vestibular-driven postural responses are context-dependent and transformed based upon head and foot posture. Previous reports indicate the importance of intrinsic foot muscles during standing, but it is unclear how vestibular-driven responses of these muscles are modulated by alterations in stability and head posture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!