The realization of high-yield, low-threshold carrier multiplication (CM) in semiconductor quantum dots (QDs) is a promising step toward third-generation photovoltaics (PV). Recent studies of QD solar cells have shown that CM can indeed produce greater-than-unity quantum efficiencies in photon-to-charge-carrier conversion, establishing the relevance of this process to practical PV technologies. While being appreciable, the reported CM yields are still not high enough for a significant increase in the power conversion efficiency over traditional bulk materials. At present, the design of nanomaterials with improved CM is hindered by a poor understanding of the mechanism underlying this process. Here, we present a possible solution to this problem by introducing a model that treats CM as a competition between impact-ionization-like scattering and non-CM energy losses. Importantly, it allows for evaluation of expected CM yields from fairly straightforward measurements of Auger recombination (inverse of CM) and near-band-edge carrier cooling. The validation of this model via a comparative CM study of PbTe, PbSe, and PbS QDs suggests that it indeed represents a predictive capability, which might help in the development of nanomaterials with improved CM performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz4004334 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!