Protonated polycyclic aromatic hydrocarbons (H(+)PAHs) have been reported to have infrared (IR) bands at wavenumbers near those of unidentified infrared (UIR) emission bands from interstellar objects. We produced 1-C16H11(+) and 1-C16H11 upon electron bombardment during matrix deposition of p-H2 containing pyrene (C16H10) in a small proportion. Intensities of absorption features of 1-C16H11(+) decreased after the matrix was maintained in darkness or irradiated with light at 365 nm, whereas those of 1-C16H11 increased. The observed line wavenumbers and relative intensities of 1-C16H11(+) and 1-C16H11 agree satisfactorily with the scaled vibrational wavenumbers and IR intensities predicted with the B3PW91/6-311++G(2d,2p) method. Our method, being relatively clean with negligible fragmentation, is applicable to larger H(+)PAH; it has the advantages of producing excellent IR spectra covering a broad spectral range with narrow lines and accurate intensities, so that structural identification among various isomers is feasible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz400923k | DOI Listing |
Phys Chem Chem Phys
January 2019
Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.
Polycyclic aromatic hydrocarbons (PAH) and their derivatives are prospective carriers of unidentified infrared (UIR) emission features observed in interstellar media. Fluoranthene (C16H10) is a simple planar PAH with five- and six-membered rings; it can be considered as a fragment of C60, which, along with its cationic counterpart, has been identified in interstellar media. Protonated fluoranthene, C16H11+, was generated upon electron bombardment during deposition at 3.
View Article and Find Full Text PDFJ Phys Chem Lett
June 2013
†Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.
Protonated polycyclic aromatic hydrocarbons (H(+)PAHs) have been reported to have infrared (IR) bands at wavenumbers near those of unidentified infrared (UIR) emission bands from interstellar objects. We produced 1-C16H11(+) and 1-C16H11 upon electron bombardment during matrix deposition of p-H2 containing pyrene (C16H10) in a small proportion. Intensities of absorption features of 1-C16H11(+) decreased after the matrix was maintained in darkness or irradiated with light at 365 nm, whereas those of 1-C16H11 increased.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!