Proton therapy dose is affected by relative biological effectiveness differently than X-ray therapies. The current clinically accepted weighting factor is 1.1 at all positions along the depth-dose profile. However, the relative biological effectiveness correlates with the linear energy transfer, cell or tissue type, and the dose per fraction causing variation of relative biological effectiveness along the depth-dose profile. In this article, we present a simple relative biological effectiveness-weighted treatment planning risk assessment algorithm in 2-dimensions and compare the results with those derived using the standard relative biological effectiveness of 1.1. The isodose distribution profiles for beams were accomplished using matrices that represent coplanar intersecting beams. These matrices were combined and contoured using MATLAB to achieve the distribution of dose. There are some important differences in dose distribution between the dose profiles resulting from the use of relative biological effectiveness = 1.1 and the empirically derived depth-dependent values of relative biological effectiveness. Significant hot spots of up to twice the intended dose are indicated in some beam configurations. This simple and rapid risk analysis could quickly evaluate the safety of various dose delivery schema.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/1533034615599313 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Anesthesiology, Shenzhen Children's Hospital, Yitian Road 7019, Shenzhen, 518000, China.
Hair follicle (HF) development and pigmentation are complex processes governed by various signaling pathways, such as TGF-β and FGF signaling pathways. Nestin + (neural crest like) stem cells are also expressed in HF stem cells, particularly in the bulge and dermal papilla region. However, the specific role and differentiation potential of these Nestin-positive cells within the HF remain unclear, especially regarding their contribution to melanocyte formation and hair pigmentation.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Laboratory of Cellular Toxicology, Faculty of Science, Department of Biology, Badji Mokhtar University, Annaba, Algeria.
This study investigates the chemical composition of the essential oil (EO) extracted by hydrodistillation from dry Eucalyptus leaves (Eucalyptus globulus) and its antifungal, antibacterial and antioxidant potential. The Eucalyptus leaves were harvested in the commune of Seraïdi (north-eastern Algeria). Chemical analysis carried out by chromatography coupled with mass spectrophotometry (GC-SM) revealed the presence of 20 molecules representing approximately 100% of the overall component, with a yield of 1.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Pharmacology, Faculty of Pharmacy, Mersin University, Mersin, Türkiye.
Increasing evidence suggests that inhibition of receptor-interacting serine/threonine-protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain-like pseudokinase (MLKL) necrosome has protective effects in vivo models of painful conditions seen in humans associated with inflammation and demyelination in the central nervous system. However, the contribution of RIPK1-driven necroptosis to inflammatory pain remains unknown. Therefore, this study aims to determine the effect of necrostatin (Nec) -1s, a selective RIPK1 inhibitor, on lipopolysaccharide (LPS)-induced inflammatory pain and related underlying mechanisms.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
The Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
In order to make the drugs can cure the tumor precisely, this paper establishes the tumor immune dynamic model through the differential equation of tumor growth and analyzes the persistence of the tumor immune model. Research on dual anticancer drugs and commonly used coupling methods is carried out to complete the synthesis of polyethylene glycol dual anticancer drug couplers and the antitumor activity is analyzed to derive the degree of inhibition of polyethylene glycol dual anticancer drugs on tumor activity. From the four judging criteria, it was concluded that the polyethylene glycol bis-anti-cancer drug has a better curative effect on tumor cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!