Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To determine dietary selenium (Se) status regulates the transcriptions of selenoproteome and activities of selenoenzymes in chicken kidney, 1-day-old chickens received low Se (0.028 mg Se per kg of diet) or super-nutritional Se (3.0 or 5.0 mg Se per kg of diet) in their diets for 8 weeks. It was observed that dietary low or super-nutritional Se did not make renal appearance pathological changes in chicken. Low Se significantly reduced total antioxidant capability (T-AOC), glutathione (GSH) content, but malondialdehyde (MDA) content in the kidney increased and decreased glutathione peroxidase (Gpx) and thioredoxin reductase (TrxR) activity with changes in their mRNA levels. Super-nutritional Se (3.0 mg/kg) increased T-AOC and GSH contents then made them reduce, but it reduced MDA content significantly, elevated then reduced Gpx activity, and decreased TrxR activity with changes in their mRNA levels. Dietary low Se downregulated the mRNA expressions of Gpx1-4, Txnrd3, Sepn1, Selw, Sepx1, Selh, and SEPSECS. At super-nutritional Se, most selenoproteins were upregulated in chicken kidney, but Sepp2 and Sep15 was only upregulated in Se excess (5.0 mg/kg) bird. These results indicated that dietary Se status stabilizes normal renal physiology function via regulation of the selenoprotemic transcriptions and selenoenzyme activities in avian.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7091239 | PMC |
http://dx.doi.org/10.1007/s12011-015-0470-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!