Nerve growth factor (NGF) is essential for the survival and functional maintenance of forebrain cholinergic neurons projecting mainly to the cortex and hippocampus. NGF is produced in these brain areas but while mature NGF (mNGF) has a survival/differentiative effect its precursor proNGF elicits apoptosis in cholinergic neurons. Impaired neurotransmission, loss of cholinergic phenotype and abnormal NGF content characterize the cholinergic circuitries in animal models of diabetic encephalopathy (DE). It is not known whether defective production or maturation of NGF could play a key role in cholinergic neurodegeneration in DE. Quantification of the mNGF/proNGF ratio is therefore needed to characterize the development and progression of NGF-related neuronal diseases. In our work, we aimed at developing ELISA methods to measure either mNGF or proNGF tissue concentration; and to define the mNGF/proNGF ratio in the rat cortex and hippocampus during the early stage of streptozotocin-induced type 1 diabetes. Using commercially available NGF ELISA kits and antibodies, we set up ELISAs for human and rat mNGF and proNGF. We then analyzed the mNGF/proNGF ratio in the cortex and hippocampus of DE rats and found that it decreased in both tissues starting from the fourth week after diabetes induction. In diabetic brain the increase in proNGF involves accumulation of the isoforms with molecular weights of 50 and 34 kDa. Our study for the first time specifically quantifies the absolute content of mature and proNGF and the mNGF/proNGF ratio in brain tissues, suggesting that early progression of experimental DE is characterized by defective maturation of NGF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2015.08.005 | DOI Listing |
Neurochem Int
October 2019
Institute of Translational Pharmacology, Consiglio Nazionale Delle Ricerche (CNR), Rome, Italy. Electronic address:
The present work aimed to explore the innovative hypothesis that different transcript/protein variants of a pro-neurotrophin may generate different biological outcomes in a cellular system. Nerve growth factor (NGF) is important in the development and progression of neurodegenerative and cancer conditions. Mature NGF (mNGF) originates from a precursor, proNGF, produced in mouse in two major variants, proNGF-A and proNGF-B.
View Article and Find Full Text PDFMol Cell Endocrinol
September 2016
Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden. Electronic address:
Women with polycystic ovary syndrome (PCOS) have elevated circulating androgens during pregnancy and are at an increased risk of adverse pregnancy outcomes. Here we tested the hypotheses that maternal androgen excess decrease placental and fetal growth, and placental expression of markers of steroidogenesis, angiogenesis and sympathetic activity, and that acupuncture with low-frequency electrical stimulation prevents these changes. Pregnant rats were exposed to vehicle or testosterone on gestational day (GD)15-19.
View Article and Find Full Text PDFBrain Res
October 2015
Institute of Translational Pharmacology-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy. Electronic address:
Nerve growth factor (NGF) is essential for the survival and functional maintenance of forebrain cholinergic neurons projecting mainly to the cortex and hippocampus. NGF is produced in these brain areas but while mature NGF (mNGF) has a survival/differentiative effect its precursor proNGF elicits apoptosis in cholinergic neurons. Impaired neurotransmission, loss of cholinergic phenotype and abnormal NGF content characterize the cholinergic circuitries in animal models of diabetic encephalopathy (DE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!