Selective Inhibition of Parallel DNA Damage Response Pathways Optimizes Radiosensitization of Glioblastoma Stem-like Cells.

Cancer Res

Translational Radiation Biology, Institute of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, United Kingdom.

Published: October 2015

Glioblastoma is the most common form of primary brain tumor in adults and is essentially incurable. Despite aggressive treatment regimens centered on radiotherapy, tumor recurrence is inevitable and is thought to be driven by glioblastoma stem-like cells (GSC) that are highly radioresistant. DNA damage response pathways are key determinants of radiosensitivity but the extent to which these overlapping and parallel signaling components contribute to GSC radioresistance is unclear. Using a panel of primary patient-derived glioblastoma cell lines, we confirmed by clonogenic survival assays that GSCs were significantly more radioresistant than paired tumor bulk populations. DNA damage response targets ATM, ATR, CHK1, and PARP1 were upregulated in GSCs, and CHK1 was preferentially activated following irradiation. Consequently, GSCs exhibit rapid G2-M cell-cycle checkpoint activation and enhanced DNA repair. Inhibition of CHK1 or ATR successfully abrogated G2-M checkpoint function, leading to increased mitotic catastrophe and a modest increase in radiation sensitivity. Inhibition of ATM had dual effects on cell-cycle checkpoint regulation and DNA repair that were associated with greater radiosensitizing effects on GSCs than inhibition of CHK1, ATR, or PARP alone. Combined inhibition of PARP and ATR resulted in a profound radiosensitization of GSCs, which was of greater magnitude than in bulk populations and also exceeded the effect of ATM inhibition. These data demonstrate that multiple, parallel DNA damage signaling pathways contribute to GSC radioresistance and that combined inhibition of cell-cycle checkpoint and DNA repair targets provides the most effective means to overcome radioresistance of GSC.

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-14-3790DOI Listing

Publication Analysis

Top Keywords

dna damage
16
damage response
12
cell-cycle checkpoint
12
dna repair
12
parallel dna
8
response pathways
8
glioblastoma stem-like
8
stem-like cells
8
contribute gsc
8
gsc radioresistance
8

Similar Publications

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial.

View Article and Find Full Text PDF

Isoferulic acid (IA), a derivative of cinnamic acid, is derived from Danshen and exhibits anticancer properties by disrupting cancer cell activities. However, its role in pancreatic cancer, the "king of cancer", was unknown. In this study, pancreatic cancer cells were subjected to treatment with IA (6.

View Article and Find Full Text PDF

The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!