Notch1 targeting siRNA delivery nanoparticles for rheumatoid arthritis therapy.

J Control Release

Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea. Electronic address:

Published: October 2015

Notch pathway plays a pivotal role in synoviocytes involved in progression of rheumatoid arthritis (RA). Herein, we designed the Notch1 targeting siRNA delivery nanoparticles (siRNA-NPs) in order to confirm the anti-inflammatory effect in collagen-induced arthritis (CIA) model. The siRNA-NPs were successfully produced by encapsulating polymerized siRNA (poly-siRNA) into thiolated glycol chitosan (tGC) nanoparticles in aqueous condition. The in vitro Notch1 inhibition of siRNA-NPs in murine macrophage cell (RAW 264.7) was confirmed using confocal microscopy and real time PCR. Fluorescently labeled siRNA-NPs were successfully transfected in RAW 264.7 and modulated the expression of Notch1 in mRNA level. For in vivo study, siRNA-NPs exhibited the higher targeting efficiency in the arthritic joins of CIA mice, confirmed by the near-infrared fluorescence (NIRF) imaging. Furthermore, inhibition of Notch1 with siRNA-NPs resulted in retarded progression of inflammation, bone erosion, and cartilage damage in CIA mice. Novel Notch1 targeting siRNA delivery system of siRNA-NPs showed effective RA treatment by suppressing Notch1 signaling pathway without undesirable severe toxicity. Thus, Notch1 inhibiting siRNA-NPs demonstrated the great potential in RA therapeutics that was hard to be achieved using conventional drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2015.08.025DOI Listing

Publication Analysis

Top Keywords

notch1 targeting
12
targeting sirna
12
sirna delivery
12
notch1
8
delivery nanoparticles
8
rheumatoid arthritis
8
sirna-nps
8
raw 2647
8
cia mice
8
sirna
4

Similar Publications

JAG1/Notch Pathway Inhibition Induces Ferroptosis and Promotes Cataractogenesis.

Int J Mol Sci

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.

Cataracts remain the leading cause of visual impairment worldwide, yet the underlying molecular mechanisms, particularly in age-related cataracts (ARCs), are not fully understood. The Notch signaling pathway, known for its critical role in various degenerative diseases, may also contribute to ARC pathogenesis, although its specific involvement is unclear. This study investigates the role of Notch signaling in regulating ferroptosis in lens epithelial cells (LECs) and its impact on ARC progression.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.

View Article and Find Full Text PDF

FOXA1 activates NOLC1 transcription through NOTCH pathway to promote cell stemness in lung adenocarcinoma.

Kaohsiung J Med Sci

January 2025

Department of Respiratory and Critical Care Medicine of Affiliated Yueqing Hospital, Wenzhou Medical University, Yueqing, China.

Tumor cell stemness plays a pivotal role in generating functional heterogeneity within tumors and is implicated in essential processes such as drug resistance, metastasis, and cell proliferation. Therefore, creating novel tumor diagnostic techniques and therapeutic plans requires a knowledge of the possible processes that preserve the stem cell-like qualities of cancers. Bioinformatics analysis of NOLC1 expression in lung adenocarcinoma (LUAD) and prediction of its upstream transcription factors and their binding sites were completed.

View Article and Find Full Text PDF

Pathological variants in HPV-independent vulvar tumours.

Sci Rep

January 2025

Department of Laboratory Medicine, Clinical Pathology and Genetics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.

Vulvar cancer is a rare gynaecological disease that can be caused by infection with human papillomavirus (HPV). The mutational frequencies and landscape for HPV-associated and HPV-independent vulvar tumor development are supposedly two distinctly different pathways and more detailed knowledge on target biological mechanisms for individualized future treatments is needed. The study included formalin-fixed paraffin-embedded (FFPE) samples from 32 cancer patients (16 HPV-negative and 16 HPV-associated), treated in Örebro, Sweden from 1988 to 2008.

View Article and Find Full Text PDF

Acute Kidney Injury (AKI) is a significant medical condition characterized by the abrupt decline in kidney function.Low-intensity pulsed ultrasound (LIPUS), a non-invasive therapeutic technique employing low-intensity acoustic wave pulses, has shown promise in promoting tissue repair and regeneration. A novel LIPUS system was developed and evaluated in rat AKI models, focusing on its effects on glomerular filtration rate (GFR), blood urea nitrogen (BUN), serum creatinine (SCr), and the Notch1-Akt-eNOS signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!