Femtosecond time-resolved experiments demonstrate that the photoexcited state of perylene tetracarboxylic acid bisimide (PBI) aggregates in solution decays nonradiatively on a time-scale of 215 fs. High-level electronic structure calculations on dimers point toward the importance of an excited state intermolecular geometry distortion along a reaction coordinate that induces energy shifts and couplings between various electronic states. Time-dependent wave packet calculations incorporating a simple dissipation mechanism indicate that the fast energy quenching results from a doorway state with a charge-transfer character that is only transiently populated. The identified relaxation mechanism corresponds to a possible exciton trap in molecular materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz4000752DOI Listing

Publication Analysis

Top Keywords

ultrafast exciton
4
exciton self-trapping
4
self-trapping geometry
4
geometry deformation
4
deformation perylene-based
4
perylene-based molecular
4
molecular aggregates
4
aggregates femtosecond
4
femtosecond time-resolved
4
time-resolved experiments
4

Similar Publications

Understanding and controlling the electronic properties of two-dimensional materials are crucial for their potential applications in nano- and optoelectronics. Monolayer transition metal dichalcogenides have garnered significant interest due to their strong light-matter interaction and extreme sensitivity of the band structure to the presence of photogenerated electron-hole pairs. In this study, we investigate the transient electronic structure of monolayer WS on a graphene substrate after resonant excitation of the A-exciton using time- and angle-resolved photoemission spectroscopy.

View Article and Find Full Text PDF

As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy.

View Article and Find Full Text PDF

Metal electrode deposition is universally adopted in the community for optoelectronic device fabrication, inducing hybridization at electrode interfaces, and allows efficient extraction or injection of photocarriers. However, hybridization-induced midgap states increase photocarrier recombination pathways, creating a paradoxical trade-off. Here, we discovered that efficient photocarrier extraction and a long photocarrier lifetime can be achieved simultaneously in MoS/van der Waals Au contact, minimizing photocarrier loss at the interface.

View Article and Find Full Text PDF

Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe devices.

View Article and Find Full Text PDF

Tightly bound electron-hole pairs (excitons) hosted in atomically-thin semiconductors have emerged as prospective elements in optoelectronic devices for ultrafast and secured information transfer. The controlled exciton transport in such excitonic devices requires manipulating potential energy gradient of charge-neutral excitons, while electrical gating or nanoscale straining have shown limited efficiency of exciton transport at room temperature. Here, we report strain gradient induced exciton transport in monolayer tungsten diselenide (WSe) across microns at room temperature via steady-state pump-probe measurement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!