In this study, we present a novel mechanism for NO loss from nitroalkyl radicals that circumvents the traditional higher-energy nitro-nitrite isomerization. We characterize the intrinsic reaction coordinate at the B3LYP/6-311++g(3df,2p) level of theory and calculate the transition-state energies using the G4 composite method; the subsequent dynamics en route to the highly exothermic NO + acetone product channel proceeds through a three-membered ring intermediate. Crossed laser-molecular beam scattering experiments on the 2-nitro-2-propyl radical confirm the importance of this new mechanism in determining the product branching.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz302138n | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!