We investigate and assign a previously reported unexpected transition in the metal-organic framework Zn2(NDC)2(DPNI) (1; NDC = 2,6-naphthalenedicarboxylate, DPNI = dipyridyl-naphthalenediimide) that displays linear arrangements of naphthalenediimide ligands. Given the longitudinal transition dipole moment of the DPNI ligands, J-coupling seemed possible. Photophysical measurements revealed a broad, new transition in 1 between 400 and 500 nm. Comparison of the MOF absorption spectra with that of a charge transfer (CT) complex formed by manual grinding of DPNI and H2NDC led to the assignment of the new band in 1 as arising from an interligand CT. Constrained density functional theory utilizing a custom long-range-corrected hybrid functional was employed to determine which ligands were involved in the CT transition. On the basis of relative oscillator strengths, the interligand CT was assigned as principally arising from π-stacked DPNI/NDC dimers rather than the alternative orthogonal pairs within the MOF.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz302076sDOI Listing

Publication Analysis

Top Keywords

charge transfer
8
metal-organic framework
8
transfer j-coupling?
4
j-coupling? assignment
4
assignment unexpected
4
unexpected red-shifted
4
red-shifted absorption
4
absorption band
4
band naphthalenediimide-based
4
naphthalenediimide-based metal-organic
4

Similar Publications

Heterojunctions, known for their decent separation of photo-generated electrons and holes, are promising for photocatalytic CO reduction. However, a significant obstacle in traditional post-assembled heterojunctions is the high interfacial barrier for charge transfer caused by atomic lattice mismatch at multiphase interfaces. Here, as research prototypes, the study creates a lattice-matched co-atomic interface within CsPbBr-CsPbBr polytypic nanocrystals (113-125 PNs) through the proposed in situ hybrid strategy to elucidate the underlying charge transfer mechanism within this unique interface.

View Article and Find Full Text PDF

Embedding techniques allow the efficient description of correlations within localized fragments of large molecular systems while accounting for their environment at a lower level of theory. We introduce FragPT2: a novel embedding framework that addresses multiple interacting active fragments. Fragments are assigned separate active spaces, constructed by localizing canonical molecular orbitals.

View Article and Find Full Text PDF

Dynamic random access memory (DRAM) has been a cornerstone of modern computing, but it faces challenges as technology scales down, particularly due to the mismatch between reduced storage capacitance and increasing OFF current. The capacitorless 2T0C DRAM architecture is recognized for its potential to offer superior area efficiency and reduced refresh rate requirements by eliminating the traditional capacitor. The exploration of two-dimensional (2D) materials further enhances scaling possibilities, though the absence of dangling bonds complicates the deposition of high-quality dielectrics.

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!