Sortase A Inhibitors: Recent Advances and Future Perspectives.

J Med Chem

Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.

Published: December 2015

Here, we describe the most promising small synthetic organic compounds that act as potent Sortase A inhibitors and cater the potential to be developed as antivirulence drugs. Sortase A is a polypeptide of 206 amino acids, which catalyzes two sequential reactions: (i) thioesterification and (ii) transpeptidation. Sortase A is involved in the process of bacterial adhesion by anchoring LPXTG-containing proteins to lipid II. Sortase A inhibitors do not affect bacterial growth, but they restrain the virulence of pathogenic bacterial strains, thereby preventing infections caused by Staphylococcus aureus or other Gram-positive bacteria. The efficacy of the most promising inhibitors needs to be comprehensively evaluated in in vivo models of infection, in order to select compounds eligible for the treatment of bacterial infections in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.5b00779DOI Listing

Publication Analysis

Top Keywords

sortase inhibitors
12
sortase
5
inhibitors advances
4
advances future
4
future perspectives
4
perspectives describe
4
describe promising
4
promising small
4
small synthetic
4
synthetic organic
4

Similar Publications

Novel inhibition of sortase A by plantamajoside: implications for controlling multidrug-resistant infections.

Appl Environ Microbiol

December 2024

Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China.

Article Synopsis
  • The research introduces plantamajoside (PMS) as an innovative inhibitor of sortase A (SrtA), an enzyme crucial for the virulence of methicillin-resistant Staphylococcus aureus (MRSA), showcasing its potential in combating multi-drug resistant pathogens.
  • PMS effectively reduces MRSA's ability to adhere to surfaces and form biofilms, leading to increased survival rates in infected cell models and proving beneficial in animal models by lowering mortality rates and bacterial loads.
  • The findings emphasize the significance of targeting specific bacterial mechanisms, such as SrtA, to develop new therapeutic strategies against antibiotic-resistant infections, particularly MRSA.
View Article and Find Full Text PDF

Methicillin-resistant (MRSA), one of the most important zoonotic bacterial pathogens, necessitates innovative antibacterial strategies. Rosmarinic acid (RA) possesses various biological functions, including antibacterial and anti-inflammatory effects. This study aimed to explore the synergistic effects and mechanism of RA in conjunction with ceftiofur (CF) against MRSA.

View Article and Find Full Text PDF

Targeting virulence determinants is a promising approach to controlling infections in the face of the global spread of antibiotic resistance. -induced peritonitis often occurs in dialysis, implant and trauma patients. To develop novel prevention and treatment options for peritoneal infection, we investigated the oligopeptide sortase A inhibitor LPRDA as a non-conventional antibacterial that does not affect staphylococcal survival.

View Article and Find Full Text PDF

Circular Engineered Sortase for Interrogating Histone H3 in Chromatin.

J Am Chem Soc

December 2024

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States.

Reversible modification of the histone H3 N-terminal tail is critical in regulating the chromatin structure, gene expression, and cell states, while its dysregulation contributes to disease pathogenesis. Understanding the crosstalk between H3 tail modifications in nucleosomes constitutes a central challenge in epigenetics. Here, we describe an engineered sortase transpeptidase, cW11, that displays highly favorable properties for introducing scarless H3 tails onto nucleosomes.

View Article and Find Full Text PDF

Cancer vaccines are a promising strategy to increase tumor-specific immune responses in patients who do not adequately respond to checkpoint inhibitors. Cancer vaccines that contain patient-specific tumor antigens are most effective but also necessitate the production of patient-specific vaccines. This study aims to develop a versatile cancer vaccine format in which patient-specific tumor antigens can be site-specifically conjugated by a proximity-based Sortase A (SrtA)-mediated ligation (PBSL) approach to antibodies that specifically bind to antigen-presenting cells to stimulate immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!