Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic nanoparticles can transport drug and possibly target cancer. DNA-binding of ligands loaded in dextran coated magnetic nanoparticles, could aid their better target-specific binding. In this work, we report the loading of chromenones onto aminoethylamino-modified dextran coated iron oxide nanoparticles, their loading efficiency, and openness for binding to DNA. The magnetic behavior, the size, and the morphology of the nanoparticles are analyzed. The crystallite size of the magnetic nanoparticles is around 40 nm. The chromenones are present on the surface of the dextran shell, as revealed by their cyclodextrin-binding characteristics, which is a new approach in comprehending the accessibility of the surface-bound molecules by macromolecules. The mode of binding of the chromenones to DNA is not altered on surface loading on dextran shell, although the binding strength is generally diminished, compared to the strength of binding of the free chromenones to DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2015.07.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!