Previous studies on the legume pod borer, Maruca vitrata Fabricius (Lepidoptera: Crambidae), a serious pest of cowpea, Vigna unguiculata (L.) Walp. (Fabales: Fabaceae), in sub-Saharan Africa have focused on sex pheromones, but the role of the host plant on sexual behavior has not been explored. We investigated this interaction in the laboratory using behavioral assays and chemical analyses. We found that the presence of cowpea seedlings and a dichloromethane extract of the leaf increased coupling in the legume pod borer by 33 and 61 %, respectively, compared to the control, suggesting the involvement of both contact and olfactory cues. We used coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) to identify compounds from the cowpea leaf extract, detected by M. vitrata antenna. We found that the antennae of the insect consistently detected four components, with 1-octen-3-ol identified as a common and dominant component in both the volatiles released by the intact cowpea plant and leaf extract. We therefore investigated its role in the coupling of M. vitrata. In dose-response assays, 1-octen-3-ol increased coupling in M. vitrata with increasing dose of the compound compared to the control. Our results suggest that the cowpea volatile 1-octen-3-ol contributes to M. vitrata sexual behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00114-015-1297-0 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Peru.
This review aimed to explore the impact of extrusion on Andean grains, such as quinoa, kañiwa, and kiwicha, highlighting their macromolecular transformations, technological innovations, and contributions to food security. These grains, which are rich in starch, high-quality proteins, and antioxidant compounds, are versatile raw materials for extrusion, a continuous and efficient process that combines high temperatures and pressures to transform structural and chemical components. Extrusion improves the digestibility of proteins and starches, encourages the formation of amylose-lipid complexes, and increases the solubility of dietary fiber.
View Article and Find Full Text PDFPlant Foods Hum Nutr
January 2025
College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 404100, China.
Insulin resistance was considered to be the most important clinical phenotype of type 2 diabetes (T2DM). Almond is a widely-consumed nut and long-term intake was beneficial to alleviating insulin resistance in patients with T2DM. Hence, screening of anti-diabetic peptides from almond proteins was feasible based on the effectiveness of peptides in the treatment of T2DM.
View Article and Find Full Text PDFNat Prod Res
January 2025
Department of Applied Science, Faculty of Engineering & Technology, Gurukula Kangri (Deemed to be University), Haridwar, India.
The present study aimed to evaluate the nutrition value, phytochemical content, and diverse pharmacological activities of different solvent extracts of L. fruit. Among all, the hydro-alcoholic extract showed high DPPH and ABTS radical scavenging activities with IC values of 82.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Republic of Türkiye, Ministry of Agriculture and Forestry, Hatay Olive Research Institute Directorate, General Directorate of Agricultural Research and Policies, Hassa Station, Hassa, Hatay, 31700, Türkiye.
Background: Pistachio (Pistacia vera L.) nuts are among the most popular nuts. The pistachio cultivars are tolerant to both drought and salinity, which is why they are extensively grown in the arid, saline, and hot regions of the Middle East, Mediterranean countries, and the United States.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
The mango cultivar 'Apple' is commercially important in Kenya but highly susceptible to russeting. Russeting refers to an area of fruit skin where the primary (epidermal) surface has been replaced by a secondary (peridermal) surface. The objective was to establish histologies, gene expressions and chemical compositions of a natural periderm, a wound-induced periderm and of cuticles of an un-russeted skin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!