A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Experimental and Theoretical Investigations of Infrared Multiple Photon Dissociation Spectra of Glutamine Complexes with Zn(2+) and Cd(2.). | LitMetric

AI Article Synopsis

  • This study explores the complexes formed between glutamine, zinc (Zn²⁺), and cadmium (Cd²⁺) using advanced infrared multiple photon dissociation spectroscopy.
  • The research involved the generation of specific complexes, such as deprotonated glutamine cationized with Zn²⁺ ([Zn(Gln-H)]⁺) and an intact glutamine complex with CdCl⁺ (CdCl⁺(Gln)).
  • Structural analysis revealed that the binding motifs for these metal complexes demonstrate distinct coordination sites involving amino and carbonyl groups, with theoretical calculations aligning well with the experimental findings.

Article Abstract

Complexes of glutamine (Gln) cationized with Zn(2+) and Cd(2+) were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light generated from a free-electron laser. Electrospray ionization yielded complexes of deprotonated Gln with Zn(2+), [Zn(Gln-H)](+), and intact Gln with CdCl(+), CdCl(+)(Gln). For each complex, the spectra obtained were compared with those for low-energy conformers found using quantum chemical calculations to identify the structures present experimentally. Calculations were performed at the B3LYP/6-311+G(d,p) level for [Zn(Gln-H)](+) and at the B3LYP/def2-TZVP level with an SDD effective core potential on cadmium for CdCl(+)(Gln). The main binding motif observed for the Cd(2+) complex was a charge-solvated, tridentate [N,CO,COsc] structure in which the metal binds to the backbone amino group and the carbonyl oxygens of the carboxylic acid and side-chain amide groups. The Zn(2+) system similarly preferred a [N,CO(-),COsc] binding motif, where binding was observed at the carboxylate site along with the backbone amino and side-chain carbonyl groups. In both cases, the theoretically determined lowest-energy conformers explain the experimental [Zn(Gln-H)](+) and CdCl(+)(Gln) spectra well.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b06528DOI Listing

Publication Analysis

Top Keywords

infrared multiple
8
multiple photon
8
photon dissociation
8
binding motif
8
backbone amino
8
experimental theoretical
4
theoretical investigations
4
investigations infrared
4
dissociation spectra
4
spectra glutamine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!