Background: Clinical and preclinical observations indicate that Lactobacillus plantarum has anti-inflammatory activity and may regulate the immune responses of its hosts when ingested. Recently, modification of teichoic acids (TAs) produced by L. plantarum was reported as a key to regulating the systemic immune response in mice. However, data linking TA-related genetic determinants and the immunomodulatory effect are limited. To provide genomic information for elucidating the underlying mechanism of immunomodulation by L. plantarum, we sequenced the genome of L. plantarum strain PS128.
Results: The PS128 genome contains 11 contigs (3,325,806 bp; 44.42% GC content) after hybrid assembly of sequences derived with Illumina MiSeq and PacBio RSII systems. The most abundant functions of the protein-coding genes are carbohydrate, amino acid, and protein metabolism. The 16S rDNA sequences of PS128 are closest to the sequences of L. plantarum WCFS1 and B21; these three strains form a distinct clade based on 16S rDNA sequences. PS128 shares core genes encoding the metabolism, transport, and modification of TAs with other sequenced L. plantarum strains. Compared with the TA-related genes of other completely sequenced L. plantarum strains, the PS128 contains more lipoteichoic acid exporter genes.
Conclusions: We determined the draft genome sequence of PS128 and compared its TA-related genes with those of other L. plantarum strains. Shared genomic features with respect to TA-related subsystems may be important clues to the mechanism by which L. plantarum regulates its host immune responses, but unique TA-related genetic determinants should be further investigated to elucidate strain-specific immunomodulatory effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4536865 | PMC |
http://dx.doi.org/10.1186/s13099-015-0068-y | DOI Listing |
Microorganisms
January 2025
Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
Oxidative stress caused by reactive oxygen species (ROS) affects the aging process and increases the likelihood of several diseases. A new frontier in its prevention includes bioactive foods and natural extracts that can be introduced by the diet in combination with specific probiotics. Among the natural compounds that we can introduce by the diet, extract is one of the most utilized since it contains a vast number of bioactive molecules such as phenolic acids, flavonoids, and polysaccharides that have been shown to possess antioxidant, anti-ageing, anti-cancer, and immunomodulatory activity.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Food Science and Technologies for Sustainable Agro-Food Chain (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, PC, Italy.
This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, and , known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (, , and ) using dual culture plate assays. Results from these inhibition assays revealed that PF05 and LMG 23520 strains were the most effective in suppressing fungal growth, especially .
View Article and Find Full Text PDFMicroorganisms
January 2025
Laboratory of Veterinary Pharmacokinetics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea.
Aquaculture has grown significantly, contributing to global food security and sustainability; however, intensified fish farming has increased disease susceptibility and antibiotic resistance. This study assessed the probiotic potential of PSCPL13 (hereafter, PSCPL13), isolated from the intestines of Japanese eels, for enhancing the health of olive flounder. After screening 16 isolates, PSCPL13 was selected because of its potential broad-spectrum antibacterial activity against many pathogens, such as and .
View Article and Find Full Text PDFMicroorganisms
December 2024
Jeonju AgroBio-Materials Institute (JAMI), Jeonju-si 54810, Republic of Korea.
This study evaluated the probiotic potential of lactic acid bacteria (LAB) isolated from fermented milk and soymilk products purchased from local markets. The LAB strains were assessed for acid and bile resistance, antibiotic resistance, and adhesion to human intestinal epithelial models. (JAMI_LB_02) and (JAMI_LB_05) showed the highest survival rates in artificial gastric and bile juices, at 87.
View Article and Find Full Text PDFFoods
January 2025
Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand.
Northern Thai culture offers a rich variety of traditional fermented foods beneficial for gastrointestinal health. In this study, we characterized lactic acid bacteria (LAB) from various indigenous fermented foods as potential probiotic candidates and determined their properties for application in commercial synbiotic formulation. Five isolates demonstrating high tolerance to low pH (2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!