We show that substituting quaterthiophene cores with strong H-bond aggregators, such as urea groups, provides an efficient way to adjust the mutual in-plane displacements of the semiconducting units and promote charge transfer. Our 2-D structure-property mapping reveals that the insertion of substituents induces up to 2.0 Å longitudinal and transversal displacements between the π-conjugated moieties. Some of these relative displacements lead to improved cofacial orbital overlaps that are otherwise inaccessible due to Pauli repulsion. Our results also emphasize that the fine-tuning of in-plane displacements is more effective than achieving "tighter" packing to promote charge-transfer properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598018 | PMC |
http://dx.doi.org/10.1021/jz501078s | DOI Listing |
Acc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China. Electronic address:
Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Faculty of Sport and Health Sciences, University of Jyväskylä, 40014 Jyväskylä, Finland.
Previous studies on the effects of intensified training on sleep quality/quantity have been somewhat contradictory. Moreover, recreational athletes often track various sleep metrics, and those metrics' actual connections to training adaptations are unknown. This study explored the effects of intensified training on sleep and nightly recovery along with their associations with training adaptations.
View Article and Find Full Text PDFMolecules
January 2025
Department of Applied Chemistry, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.
View Article and Find Full Text PDFMolecules
January 2025
Key Laboratory of Functional Materials Physics and Chemistry, Ministry of Education, College of Physics, Jilin Normal University, Changchun 130103, China.
The main component of high-capacity silicon-based electrodes is silicon powder, which necessitates intricate processing to minimize volume growth and powder separation while guaranteeing the ideal Si content. This work uses the an situ high-pressure forming approach to create an MXene/-Si/MXene composite electrode, where MXene refers to TiCT, and -Si denotes two-phase mixed nano-Si particles. The sandwich shape promotes silicon's volume growth and stops active particles from spreading.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!