Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rate of self-reaction of the simplest Criegee intermediate, CH2OO, is of importance in many current laboratory experiments where CH2OO concentrations are high, such as flash photolysis and alkene ozonolysis. Using laser flash photolysis while simultaneously probing both CH2OO and I atom by direct absorption, we can accurately determine absolute CH2OO concentrations as well as the UV absorption cross section of CH2OO at our probe wavelength (λ = 375 nm), which is in agreement with a recently published value. Knowing absolute concentrations we can accurately measure kself = 6.0 ± 2.1 × 10(-11)cm(3) molecule(-1) s(-1) at 297 K. We are also able to put an upper bound on the rate coefficient for CH2OO + I of 1.0 × 10(-11) cm(3) molecule(-1) s(-1). Both of these rate coefficients are at least a factor of 5 smaller than other recent measurements of the same reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz5008406 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!