Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma.

Oncogene

Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.

Published: May 2016

The transcription factor interferon regulatory factor 5 (IRF5) is upregulated in Hodgkin lymphoma (HL) and is a key regulator of the aberrant transcriptome characteristic of this disease. Here we show that IRF5 upregulation in HL is driven by transcriptional activation of a normally dormant endogenous retroviral LOR1a long terminal repeat (LTR) upstream of IRF5. Specifically, through screening of RNA-sequencing libraries, we detected LTR-IRF5 chimeric transcripts in multiple HL cell lines but not in normal B-cell controls. In HL, the LTR was in an open and hypomethylated epigenetic state, and we further show the LTR is the site of transcriptional initiation. Among HL cell lines, usage of the LTR promoter strongly correlates with overall levels of IRF5 mRNA and protein, indicating that LTR transcriptional awakening is a major contributor to IRF5 upregulation in HL. Taken together, oncogenic IRF5 overexpression in HL is the result of a specific LTR transcriptional activation. We propose that such LTR derepression is a distinct mechanism of oncogene activation ('onco-exaptation'), and that such a mechanism warrants further investigation in molecular and cancer research.

Download full-text PDF

Source
http://dx.doi.org/10.1038/onc.2015.308DOI Listing

Publication Analysis

Top Keywords

endogenous retroviral
8
ltr
8
hodgkin lymphoma
8
irf5 upregulation
8
transcriptional activation
8
cell lines
8
ltr transcriptional
8
irf5
7
onco-exaptation endogenous
4
retroviral ltr
4

Similar Publications

A new twist on superantigen-activated autoimmune disease.

J Clin Invest

January 2025

Division of Rheumatology, Center of Excellence for Intestinal and Immunology Research, University of Alberta, Edmonton, Alberta, Canada.

Superantigen-induced (Sag-induced) autoimmunity has been proposed as a mechanism for many human disorders, without a clear understanding of the potential triggers. In this issue of the JCI, McCarthy and colleagues used the SKG mouse model of rheumatoid arthritis to characterize the role of Sag activity in inflammatory arthritis by profiling arthritogenic naive CD4+ T cells. Within the diseased joints, they found a marked enrichment of T cell receptor-variable β (TCR-Vβ) subsets that were reactive to the endogenously encoded mouse mammary tumor virus (MMTV) Sag.

View Article and Find Full Text PDF

Bacterial infections can induce exuberant immune responses that can damage host tissues. Previously, we demonstrated that systemic infection in mice causes tissue damage in the liver. This liver necrosis is associated with the expression of endogenous retroviruses, chromosomally integrated retroviruses that encode a reverse transcriptase.

View Article and Find Full Text PDF

Background: The adoptive cell transfer (ACT) of T cell receptor (TCR)-engineered T cells targeting the HLA-A2-restricted epitope NY-ESO-1 (A2/NY) has yielded important clinical responses against several cancers. A variety of approaches are being taken to augment tumor control by ACT including TCR affinity-optimization and T-cell coengineering strategies to address the suppressive tumor microenvironment (TME). Most TCRs of clinical interest are evaluated in immunocompromised mice to enable human T-cell engraftment and do not recapitulate the dynamic interplay that occurs with endogenous immunity in a treated patient.

View Article and Find Full Text PDF

Papillary thyroid cancer (PTC) is one of the fastest-growing cancers worldwide, lacking established causal factors or validated early diagnostics. Human endogenous retroviruses (HERVs), comprising 8% of human genomes, have potential as PTC biomarkers due to their comparably high baseline expression in healthy thyroid tissues, indicating homeostatic roles. However, HERV regions are often overlooked in genome-wide association studies because of their highly repetitive nature, low sequence coverage, and decreased sequencing quality.

View Article and Find Full Text PDF

The pluripotent stem cell (PSC)-derived human primordial germ cell-like cells (PGCLCs) are a cell culture-derived surrogate model of embryonic primordial germ cells. Upon differentiation of PSCs to PGCLCs, multiple loci of HML-2, the hominoid-specific human endogenous retrovirus (HERV), are strongly activated, which is necessary for PSC differentiation to PGCLCs. In PSCs, strongly activated loci of HERV-H family HERVs create chromatin contacts, which are required for the pluripotency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!