Introduction: Bone metastasis remains incurable with treatment restricted to palliative care. Cabozantinib (CBZ) is targeted against multiple receptor tyrosine kinases involved in tumour pathobiology, including hepatocyte growth factor receptor (MET) and vascular endothelial growth factor receptor 2 (VEGFR-2). CBZ has demonstrated clinical activity in advanced prostate cancer with resolution of lesions visible on bone scans, implicating a potential role of the bone microenvironment as a mediator of CBZ effects. We characterised the effects of short-term administration of CBZ on bone in a range of in vivo models to determine how CBZ affects bone in the absence of tumour.

Methods: Studies were performed in a variety of in vivo models including male and female BALB/c nude mice (age 6-17-weeks). Animals received CBZ (30 mg/kg, 5× weekly) or sterile H2O control for 5 or 10 days. Effects on bone integrity (μCT), bone cell activity (PINP, TRAP ELISA), osteoblast and osteoclast number/mm trabecular bone surface, area of epiphyseal growth plate cartilage, megakaryocyte numbers and bone marrow composition were assessed. Effects of longer-term treatment (15-day & 6-week administration) were assessed in male NOD/SCID and beige SCID mice.

Results: CBZ treatment had significant effects on the bone microenvironment, including reduced osteoclast and increased osteoblast numbers compared to control. Trabecular bone structure was altered after 8 administrations. A significant elongation of the epiphyseal growth plate, in particular the hypertrophic chondrocyte zone, was observed in all CBZ treated animals irrespective of administration schedule. Both male and female BALB/c nude mice had increased megakaryocyte numbers/mm(2) tissue after 10-day CBZ treatment, in addition to vascular ectasia, reduced bone marrow cellularity and extravasation of red blood cells into the extra-vascular bone marrow. All CBZ-induced effects were transient and rapidly lost following cessation of treatment.

Conclusion: Short-term administration of CBZ induces rapid, reversible effects on the bone microenvironment in vivo highlighting a potential role in mediating treatment responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4768060PMC
http://dx.doi.org/10.1016/j.bone.2015.08.003DOI Listing

Publication Analysis

Top Keywords

bone microenvironment
16
bone
15
effects bone
12
bone marrow
12
cbz
10
growth factor
8
factor receptor
8
potential role
8
short-term administration
8
administration cbz
8

Similar Publications

Immunotherapy in the Battle Against Bone Metastases: Mechanisms and Emerging Treatments.

Pharmaceuticals (Basel)

November 2024

Department of Anatomy and Genetics, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.

Bone metastases are a prevalent complication in advanced cancers, particularly in breast, prostate, and lung cancers, and are associated with severe skeletal-related events (SREs), including fractures, spinal cord compression, and debilitating pain. Conventional bone-targeted treatments like bisphosphonates and RANKL inhibitors (denosumab) reduce osteoclast-mediated bone resorption but do not directly impact tumor progression within the bone. This review focuses on examining the growing potential of immunotherapy in targeting the unique challenges posed by bone metastases.

View Article and Find Full Text PDF

Whole-Exome Analysis and Osteosarcoma: A Game Still Open.

Int J Mol Sci

December 2024

Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.

Osteosarcoma (OS) is the most prevalent malignant bone tumor in adolescents and young adults. OS cells grow in a permissive local microenvironment which modulates their behavior and facilitates all steps in tumor development (e.g.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a malignant disease characterized by the proliferation of plasma cells, primarily in the bone marrow. It accounts for approximately 1% of all cancers and 10% of hematologic malignancies. Clinical manifestations include hypercalcemia, anemia, renal failure, and bone lesions.

View Article and Find Full Text PDF

ZFP36L2 Is a Potential Prognostic Marker of IL1β Osteosarcoma.

Biomedicines

December 2024

Department of Anatomy, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.

Osteosarcoma stands as the predominant bone malignancy afflicting children and young adults. Despite strides in treatment, the enduring reality is that the long-term survival rates for patients grappling with recurrences and metastases linger at a mere 30%. This underscores the pressing demand for novel prognostic markers and therapeutic avenues to improve outcomes and offer hope to those battling this formidable disease.

View Article and Find Full Text PDF

Targeted therapies (e.g., ibrutinib) have markedly improved chronic lymphocytic leukemia (CLL) management; however, ~20% of patients experience disease relapse, suggesting the inadequate depth and durability of these front-line strategies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!