Er(3+) activated germanate glasses modified by La2O3 and Y2O3 with good thermal stability were prepared. 2.7 μm fluorescence was observed and corresponding radiative properties were investigated. A detailed discussion of J-O parameters has been carried out based on absorption spectra and Judd-Ofelt theory. The peak emission cross sections of La2O3 and Y2O3 modified germanate glass are (14.3 ± 0.10) × 10(-21) cm(2) and (15.4 ± 0.10) × 10(-21) cm(2), respectively. Non-radiative relaxation rate constants and energy transfer coefficients of (4)I11/2 and (4)I13/2 levels have been obtained and discussed to understand the 2.7 μm fluorescence behavior. Moreover, the energy transfer processes of (4)I11/2 and (4)I13/2 level were quantitatively analyzed according to Dexter's theory and Inokuti-Hirayama model. The theoretical calculations are in good agreement with the observed 2.7 μm fluorescence phenomena. Results demonstrate that the Y2O3 modified germanate glass, which possesses more excellent spectroscopic properties than La2O3 modified germanate glass, might be an attractive candidate for mid-infrared laser.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538383 | PMC |
http://dx.doi.org/10.1038/srep13056 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!