CmpacC regulates mycoparasitism, oxalate degradation and antifungal activity in the mycoparasitic fungus Coniothyrium minitans.

Environ Microbiol

State Key Laboratory of Agricultural Microbiology and Key Laboratory of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.

Published: November 2015

The PacC/Rim101 pH-responsive transcription factor is an important pathogenicity element for many plant-pathogenic fungi. In this study, we investigated the roles of a PacC homologue, CmpacC, in the mycoparasitic fungus Coniothyrium minitans. CmpacC was confirmed to have the transcriptional activation activity by the transcriptional activation test in Saccharomyces cerevisiae. Disruption of CmpacC resulted in impaired fungal responses to ambient pH. Compared to the wild-type, the CmpacC-disruption mutant ΔCmpacC-29 was significantly suppressed for activities of chitinase and β-1,3-glucanase at pH 5 and 7, consistent with reduced expression levels of Cmch1 and Cmg1 coding for the two enzymes respectively. However, the mutant displayed acidity-mimicking phenotypes such as improved oxalate degradation and increased antifungal activity at pH 6 or higher. Improved efficacy in oxalate degradation by ΔCmpacC-29 was consistent with the enhanced expression level of Cmoxdc1 coding for oxalate decarboxylase. CmpacC transcriptional activation of Cmch1 and Cmg1 and repression of Cmoxdc1 were verified by the presence of the PacC/Rim101 consensus binding-motifs in gene promoter regions and by the promoter DNA-binding assays. This study suggests that CmpacC plays an activator role in regulation of C. minitans mycoparasitism, whereas plays a repressor role in regulation of oxalate degradation and possibly antifungal activity of C. minitans.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.13018DOI Listing

Publication Analysis

Top Keywords

oxalate degradation
16
antifungal activity
12
transcriptional activation
12
degradation antifungal
8
mycoparasitic fungus
8
fungus coniothyrium
8
coniothyrium minitans
8
cmch1 cmg1
8
role regulation
8
cmpacc
6

Similar Publications

The SiO/graphite composite is recognized as a promising anode material for lithium-ion batteries (LIBs), owing to the high theoretical capacity of SiO combined with the excellent stability of graphite. However, the inherent disadvantage of volume expansion in silicon-based anodes places significant challenges on the solid electrolyte interphase (SEI) and severely degrades the electrochemical performance. Rational formulation of electrolyte, including its additives, is crucial in accommodating and optimizing the composition of the SEI and enhancing the cell performance.

View Article and Find Full Text PDF

Impact of accumulation of organic acids on the degradation of cellulose in historic paper.

Carbohydr Polym

March 2025

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia. Electronic address:

The acidity of historic paper, a property crucial for its preservation, is thought to mainly depend on the type of sizing. However, this research shows that during its degradation, paper acidity increases mainly due to the formation of non-volatile carboxylic acids, which accelerate acid-catalysed hydrolysis. Whether and how this accumulation depends on paper composition has not been studied systematically so far.

View Article and Find Full Text PDF

The initiation of calcium oxalate (CaOx) kidney stone formation is highly likely to stem from injury to the renal tubular epithelial cells (RTECs) induced by stimulation from an aberrant urinary environment. CHAC1 plays a critical role in stress response mechanisms by regulating glutathione metabolism. Endoplasmic reticulum (ER) stress and ferroptosis are demonstrated to be involved in stone formation.

View Article and Find Full Text PDF

Crystallization induced by fungi and bacteria.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Department of Botany, St Petersburg State University, Universitetskaya emb. 7/9, St Petersburg, 199034, Russian Federation.

Crystallization induced by lithobiont microbial communities (fungi, bacteria, lichens) has received great attention in science and beyond. The studies discussed here focus on the mechanisms and factors of microbial biomineralization. The multilevel modelling approach, which made it possible to solve this interdisciplinary problem, is highlighted.

View Article and Find Full Text PDF

Effective pretreatment of tea stem via poly-deep eutectic solvent for promoting platform molecule production and obtaining fluorescent lignin.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:

In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!