The present work investigates the electronic conduction of reduced graphene oxide flakes and the coupling between flakes through a combined SECM (scanning electrochemical microscopy), AFM, and SEM analysis. Images of individual and interconnected flakes directly reveal the signature of the contact resistance between flakes in a noncontact and substrate-independent way. Quantitative evaluation of the parameters is achieved with the support of numerical simulations to interpret the experimental results. The interflakes contact resistance importantly impacts the transport of electrons, which can be anticipated as a key parameter in r-GO-based materials used in fuel cells, lithium batteries, supercapacitors, and organic electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz502224f | DOI Listing |
Nat Commun
January 2025
Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
Micro actuators are widely used in NEMS/MEMS for control and sensing. However, most are designed with suspended beams anchored at fixed points, causing two main issues: restricted actuated stroke and movement modes, and reduced lifespan due to fatigue from repeated beam deformation, contact wear and stiction. Here, we develop an electrostatic in-plane actuator leveraging structural superlubric sliding interfaces, characterized by zero wear, ultralow friction, and no fixed anchor.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea. Electronic address:
The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (I and I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Environmental and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Center for Membrane Separation and Water Science & Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
Heatable super hydrophobic polyurethane (PU) sponges (S-GNS/CNT/PVA@PU) containing three-dimensional (3D) carbon nano-networks (CNNs) coatings made from two-dimensional (2D) expanded graphite nano-sheets (GNS) bridged by one-dimensional (1D) carbon nano-tubes (CNT) were constructed using polyvinyl alcohol (PVA) as binder, in which light and/or electric energy could be rapidly converted into heat to reduce the viscosity of spilled heavy oils, resulting in greatly increased oil. Their heavy oil recovery rate could reach 792 kg/(m·h) under combined light and Joule heating of 1 sun and 5 V. Surface heat dissipating coefficient Ks, heat dissipating index n, and surface heat absorption capacity Cs were studied relating to sizes and shapes of surface heating fields under varied heating modes.
View Article and Find Full Text PDFSmall Methods
January 2025
Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China.
Urea-assisted water splitting is a promising energy-saving hydrogen (H) production technology. However, its practical application is hindered by the lack of high-performance bifunctional catalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Herein, a heterostructured catalyst comprising highly active NiSe and NiSe, along with a conductive graphene-coated nickel foam skeleton (NiSe-NiSe/GNF) is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!