A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sensitive periods for 17β-estradiol exposure during immune system development in sea bass head kidney. | LitMetric

Sensitive periods for 17β-estradiol exposure during immune system development in sea bass head kidney.

J Appl Toxicol

UMR-I 02 INERIS-URCA-ULH, Unité Stress Environnementaux et Biosurveillance des milieux aquatiques (SEBIO), SFR SCALE 4116, Université du Havre, Le Havre, France.

Published: June 2016

An increasing body of evidence suggests that sex steroids play an important role in the development and regulation of vertebrate immune defense. Therefore, compounds with estrogenic activity may influence the immune system via receptor-mediated pathways. The presence of estrogen receptors in immune cells and organs during the early stages of development may indicate that female steroid hormones are involved in the maturation of the fish immune system. This is of particular importance, as some marine fish are probably exposed to sources of exogenous estrogens while they reside in their estuarine nursery grounds. In this study, the influence of 17β-estradiol (E2) on estrogen receptor and cytokine gene expression was assessed in juvenile sea bass (Dicentrarchus labrax) together with characterization of the head kidney leukocyte populations and corresponding phagocytic activity during organ regionalization from 98 to 239 dph. E2 exposure, beginning at 90 dph resulted in indirect and delayed modifications of interleukin 1β and estrogen receptor α gene expression, which may affect B-lymphocyte proliferation in the sea bass head kidney. The E2 treatment of 120 dph fish led to an increase in estrogen receptor β2 and a decrease in transforming growth factor β1 gene expression, which coincided with decreased phagocytic activity of head kidney lymphocytes and monocytes/macrophages. Additionally, these changes were observed during developmental periods described as critical phases for B-lymphocyte development in mammals. Consequently, exogenous estrogens have the potential to modify the innate immune response in juvenile sea bass and to exert detrimental effects on head kidney development. Copyright © 2015 John Wiley & Sons, Ltd.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.3215DOI Listing

Publication Analysis

Top Keywords

head kidney
20
sea bass
16
immune system
12
estrogen receptor
12
gene expression
12
bass head
8
exogenous estrogens
8
juvenile sea
8
phagocytic activity
8
immune
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!