Cyclic AMP-dependent protein kinase (PKA) is regulated in part by N-terminal myristylation of its catalytic (C) subunit. Structural information about the role of myristylation in membrane targeting of PKA has been limited. In mammalian cells there are four functionally non-redundant PKA regulatory subunits (RIα, RIβ, RIIα, and RIIβ). PKA is assembled as an inactive R2C2 holoenzyme in cells. To explore the role of N-myristylation in membrane targeting of PKA holoenzymes, we solved crystal structures of RIα:myrC and RIIβ2:myrC2, and showed that the N-terminal myristylation site in the myrC serves as a flexible "switch" that can potentially be mobilized for membrane anchoring of RII, but not RI, holoenzymes. Furthermore, we synthesized nanodiscs and showed by electron microscopy that membrane targeting through the myristic acid is specific for the RII holoenzyme. This membrane-anchoring myristylation switch is independent of A Kinase Anchoring Proteins (AKAPs) that target PKA to membranes by other mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558360 | PMC |
http://dx.doi.org/10.1016/j.str.2015.07.007 | DOI Listing |
Nat Commun
December 2024
Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R).
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
Objective: Inflammation and oxidative damage play critical roles in the pathogenesis of sepsis-induced cardiac dysfunction. Multiple EGF-like domains 9 (MEGF9) is essential for cell homeostasis; however, its role and mechanism in sepsis-induced cardiac injury and impairment remain unclear.
Methods: Adenoviral and adeno-associated viral vectors were applied to overexpress or knock down the expression of MEGF9 in vivo and in vitro.
FEBS Lett
December 2024
Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Israel.
The Homo sapiens Na/H antiporter NHA2 (SLC9B2) transports Na or Li in exchange for protons across cell membranes, and its dysfunction results in various pathologies. The activity of HsNHA2 is specifically inhibited by the flavonoid phloretin. Using bioinformatic modeling, we predicted two amino acids (R177 and S178) as being important for the binding of phloretin to the HsNHA2 molecule.
View Article and Find Full Text PDFIndian J Med Res
November 2024
Department of Microbiology, Aarupadai Veedu Medical College & Hospital, Puducherry, India.
Background & objectives The emergence of drug resistance in leishmaniasis has remained a concern. Even new drugs have been found to be less effective within a few years of their use. Coupled with their related side effects and cost-effectiveness, this has prompted the search for alternative therapeutic options.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!