Reconstruction of the Molecular Structure of a Multichromophoric System Using Single-Molecule Defocused Wide-Field Imaging.

J Phys Chem Lett

†Spectroscopy Laboratory for Functional π-Electronic Systems and Department of Chemistry, Yonsei University, Seoul 120-749, Korea.

Published: August 2014

Single-molecule defocused wide-field imaging (DWFI) has been demonstrated to be useful to determine molecular structure parameters, such as the orientations of transition dipole moments and the angular relationships between chromophores in multichromophoric molecular systems. For a series of acetylene-linked perylene bisimide (PBI) macrocycles with different ring size comprising three to six PBI dyes, we reconstructed the molecular structure of the multichromophoric system using DWFI method. Furthermore, we revealed that the structural heterogeneities and distortions depend on the ring size. Our findings illustrate the use of DWFI to gain deeper insight into the structure-property relationships of artificial light-harvesting molecular systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz501233dDOI Listing

Publication Analysis

Top Keywords

molecular structure
12
structure multichromophoric
8
multichromophoric system
8
single-molecule defocused
8
defocused wide-field
8
wide-field imaging
8
molecular systems
8
ring size
8
reconstruction molecular
4
system single-molecule
4

Similar Publications

Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.

View Article and Find Full Text PDF

Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.

View Article and Find Full Text PDF

Unlocking hexafluoroisopropanol as a practical anion-binding catalyst for living cationic polymerization.

Angew Chem Int Ed Engl

January 2025

Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, Key Laboratory of Polymer Ecomaterials, 5625 Renmin Street, Changchun, , 130022, Changchun, CHINA.

Living cationic polymerization (LCP) is a classical technique for precision polymer synthesis; however, due to the high sensitivity of cationic active species towards chain-transfer/termination events, it is notoriously difficult to control polymerization under mild conditions, which inhibits its progress in advanced materials engineering. Here, we unlock a practical anion-binding catalytic strategy to address the historical dilemma in LCP. Our experimental and mechanistic studies demonstrate that commercially accessible hexafluoroisopropanol (HFIP), when used in high loading, can create higher-order HFIP aggregates to tame dormant-active species equilibrium via non-covalent anion-binding principle, in turn inducing distinctive polymerization kinetics behaviors that grant efficient chain propagation while minimizing competitive side reactions.

View Article and Find Full Text PDF

Charge transfer emission between π- and 4f-orbitals in a trivalent europium complex.

Commun Chem

January 2025

Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.

Photoinduced metal-to-ligand (or ligand-to-metal) charge-transfer (CT) states in metal complexes have been extensively studied toward the development of luminescent materials. However, previous studies have mainly focused on CT transitions between d- and π-orbitals. Herein, we report the demonstration of CT emission from 4f- to π-orbitals using a trivalent europium (Eu(III)) complex, supported by both experimental and theoretical analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!