Oxygen is released to living tissues via conformational changes of hemoglobin from R-state (oxyhemoglobin) to T-state (desoxyhemoglobin). The detailed mechanism of this process is not yet fully understood. We have carried out micromechanical experiments on oxyhemoglobin crystals to determine the behavior of the Young's modulus and the internal friction for temperatures between 20 °C and 70 °C. We have found that around 49 °C oxyhemoglobin crystal samples undergo a sudden and strong increase of their Young's modulus, accompanied by a sudden decrease of the internal friction. This sudden mechanical change (and the ensuing force release) takes place in a partially unfolded state and precedes the full denaturation transition at higher temperatures. After this transformation, the hemoglobin crystals have the same mechanical properties as their initial state at room temperatures. We conjecture that it can be relevant for explaining the oxygen-releasing function of native oxyhemoglobin when the temperature is increased, e.g. due to active sport. The effect is specific for the quaternary structure of hemoglobin, and is absent for myoglobin with only one peptide sequence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4538398 | PMC |
http://dx.doi.org/10.1038/srep13064 | DOI Listing |
World J Orthop
January 2025
Department of Orthopeadics, Featured Medical Center of Chinese People's Armed Police Forces, Tianjin 300000, China.
In healthy intervertebral discs (IVDs), nerves and blood vessels are present only in the outer annulus fibrosus, while in degenerative IVDs, a large amount of nerve and blood vessel tissue grows inward. Evidence supports that neurogenic inflammation produced by neuropeptides such as substance P and calcitonin gene related peptide released by the nociceptive nerve fibers innervating the IVDs plays a crucial role in the process of IVD degeneration. Recently, non-neuronal cells, including IVD cells and infiltrating immune cells, have emerged as important players in neurogenic inflammation.
View Article and Find Full Text PDFACS Nano
January 2025
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China.
Osteoarthritis (OA) presents a significant therapeutic challenge, with few options for preserving joint cartilage and repairing associated tissue damage. Inflammation is a pivotal factor in OA-induced cartilage deterioration and synovial inflammation. Recently, exosomes derived from human umbilical cord mesenchymal stem cells (HucMSCs) have gained recognition as a promising noncellular therapeutic modality, but their use is hindered by the challenge of harvesting a sufficient number of exosomes with effective therapeutic efficacy.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Geosciences & Natural Resource Management, Geology, University of Copenhagen, Denmark.
Due to increasing plastic production, the continuous release of primary and secondary nanoplastic particles (NPs, <1 μm) has become an emerging contaminant in terrestrial environments. The fate and transport of NPs in subsurface environments remain poorly understood, largely due to the complex interplay of mineralogical, chemical, biological, and morphological heterogeneity. This study examines interactions between abundant subsurface minerals and NPs under controlled water chemistry (1 mM KCl, pH 5.
View Article and Find Full Text PDFFood Chem
January 2025
Zhejiang Key Laboratory of Intelligent Food Logistic and Processing; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition; College of Food Science and Engineering, Ningbo University, Ningbo 315211, China. Electronic address:
To investigate the mechanism of Rhodotorula mucilaginosa on structural protein degradation and taste development of Jinhua ham, the effects of Rhodotorula mucilaginosa and Pichia kudriavzevii on proteolytic enzyme activities, surface hydrophobicity, myofibril microstructure, protein degradation, free amino acids and sensory attributes were investigated during the dry-ripening of Jinhua ham. The inoculation of Rhodotorula mucilaginosa EIODSF019 (RE) and Rhodotorula mucilaginosa XZY63-3 (RX) consistently exhibited higher proteolytic enzyme activities compared with Pichia kudriavzevii XS-5 (PK). The decrease of α-helix exposing more internal hydrophobic groups of myofibrillar proteins, contributed to higher surface hydrophobicity of RE compared with PK and RX.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
Ensuring the stability of electrocatalysts is paramount to the success of electrochemical energy conversion devices. Degradation is a fundamental process involving the release of positively charged metal ions into the electric double layer (EDL) and their subsequent diffusion into the bulk electrolyte. However, despite its vital importance in achieving prolonged electrocatalysis, the underlying causality of catalyst dissolution with the EDL structure remains largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!