Background: Prosthetic mesh implants in hernia repair are frequently used based on the fact that lower recurrence rates are detected. However, an undesirable side effect is persistent foreign body reaction that drives adhesions and shrinkage among other things in the course of time. Thereby a variety of meshes have been created in an attempt to alleviate these side effects, and particular relating to shrinkage, the ideal mesh has not been developed. Large pore size is one of the properties to get better ingrowth of the implants but could also be a risk factor to shrinkage behavior. The aim of this preclinical study was to determine optimal pore size based on mesh integration and shrinkage in a hernia minipig model.
Methods: Twenty female minipigs were each implanted at four abdominal retromuscular sites with meshes (designed and knitted specifically for this study) that had various weights and pore sizes, but similar weave. At 3 and 21 weeks post-operation, ten pigs each were euthanized. Mesh integration and shrinkage were evaluated through macroscopic observation, biomechanical testing and histopathological analysis.
Results: The large pore meshes (6.1-6.6 mm(2)) showed significantly better integration than small pore (0.9-1.1 mm(2)) counterparts, by biomechanical testing and histological assessment. This was independent of mesh weight. The lightweight small pore mesh exhibited significantly more shrinkage than any of the other meshes, while the three-dimensional heavyweight large pore mesh exhibited the least shrinkage. Mesh shrinkage and elongation at 50 Newton (N) as one parameter of the implant structural stability appeared to be strongly interrelated.
Conclusion: Tissue ingrowth of meshes depends on increasing pore size. Macroporous mesh design >1.5 mm diameter appears to be optimal in terms of mesh integration. Lightweight meshes with a large pore size on one hand and a lack of structural stability on the other hand drives mesh shrinkage. High stretchability (Elongation >50 N) induces higher shrinkage and therefore elongation at 50 N appears to be a new parameter to estimate mesh shrinkage. Three-dimensional mesh constructions relate to the lowest shrinkage behavior caused by higher structure stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijsu.2015.07.717 | DOI Listing |
J Hazard Mater
January 2025
School of Civil Engineering, Southwest Jiaotong University, Chengdu, Sichuan Province 610031, China.
Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Chemistry, Liaoning University, Shenyang 110036, P. R. China; Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou 115014, P. R. China. Electronic address:
Basic dyes are highly toxic and have adverse effects on humans such as accelerated heart rate, shock, cyanosis, and tissue necrosis upon ingestion or skin contact. Efficient removal of basic dye pollutants from wastewater is therefore essential for the protection of the environment and human health. Biomolecules exhibit excellent dye removal performance in terms of removal capacity, selectivity, and rate.
View Article and Find Full Text PDFRecent Pat Nanotechnol
January 2025
Ansteel Beijing Research Institute Co., Ltd., Beijing 102211, China.
Background: Sodium vanadium fluorophosphate is a sodium ion superconductor material with high sodium ion mobility and excellent cyclic stability, making it a promising cathode material for sodium-ion batteries. However, most of the literature and patents report preparation through traditional methods, which involve complex processes, large particle sizes, and low electronic conductivity, thereby limiting development progress.
Objective: Aiming at the limitation of high cost and poor performance of vanadium sodium fluorophosphate cathode material, the low temperature and high-efficiency nano preparation technology was developed.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
Synovial exudation, creeping, and lubrication failure in natural cartilage under a long-term normal loading can be counteracted by a tribo-rehydration (sliding-induced rehydration) phenomenon. Hydrogels, as porous materials, can also restore interfacial lubrication and overcome creep through this strategy. At appropriate sliding velocities, water molecules at the interface contact inlet are driven by hydrodynamic pressures into the porous network to resist creep extrusion.
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.
Mineral precipitation is ubiquitous in natural and engineered environments, such as carbon mineralization, contaminant remediation, and oil recovery in unconventional reservoirs. The precipitation process continuously alters the medium permeability, thereby influencing fluid transport and subsequent reaction kinetics. The diversity of preferential precipitation zones controls flow and transport efficiency as well as the capacity of mineral sequestration and immobilization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!