Background: Unique phosphodihydroceramides containing phosphoethanolamine and glycerol have been previously described in Porphyromonas gingivalis. Importantly, they were shown to possess pro-inflammatory properties. Other common human bacteria were screened for the presence of these lipids, and they were found, amongst others, in the oral pathogen Tannerella forsythia. To date, no detailed study into the lipids of this organism has been performed.

Methods: Lipids were extracted, separated and purified by HPTLC, and analyzed using GC-MS, ESI-MS and NMR. Of special interest was how T. forsythia acquires the metabolic precursors for the lipids studied here. This was assayed by radioactive and stable isotope incorporation using carbon-14 and deuterium labeled myo-inositol, added to the growth medium.

Results: T. forsythia synthesizes two phosphodihydroceramides (Tf GL1, Tf GL2) which are constituted by phospho-myo-inositol linked to either a 17-, 18-, or 19-carbon sphinganine, N-linked to either a branched 17:0(3-OH) or a linear 16:0(3-OH) fatty acid which, in Tf GL2, is, in turn, ester-substituted with a branched 15:0 fatty acid. T. forsythia lacks the enzymatic machinery required for myo-inositol synthesis but was found to internalize inositol from the medium for the synthesis of both Tf GL1 and Tf GL2.

Conclusion: The study describes two novel glycolipids in T. forsythia which could be essential in this organism. Their synthesis could be reliant on an external source of myo-inositol.

General Significance: The effects of these unique lipids on the immune system and their role in bacterial virulence could be relevant in the search for new drug targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587543PMC
http://dx.doi.org/10.1016/j.bbalip.2015.08.004DOI Listing

Publication Analysis

Top Keywords

pathogen tannerella
8
tannerella forsythia
8
fatty acid
8
forsythia
6
lipids
5
inositol-phosphodihydroceramides periodontal
4
periodontal pathogen
4
forsythia structural
4
structural analysis
4
analysis incorporation
4

Similar Publications

Treponema denticola major surface protein (Msp): a key player in periodontal pathogenicity and immune evasion.

Arch Microbiol

January 2025

Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.

Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.

View Article and Find Full Text PDF

Objective: To provide a comprehensive summary of the available evidence on the oral microbiota of humans and non-human primates about the etiology of periodontal disease.

Design: An integrative literature review was conducted on 398 clinical and observational articles published between 2010 and 2024 using searches in the MEDLINE/PubMed, Virtual Health Library, and SciELO databases. After the screening, eligibility, data extraction, and methodological quality assessment, 21 studies were selected.

View Article and Find Full Text PDF

The Effect of Oral Care Product Ingredients on Oral Pathogenic Bacteria Transcriptomics Through RNA-Seq.

Microorganisms

December 2024

Oral Care Product Development, The Procter & Gamble Company, Cincinnati, OH 45202, USA.

Various ingredients are utilized to inhibit the growth of harmful bacteria associated with cavities, gum disease, and bad breath. However, the precise mechanisms by which these ingredients affect the oral microbiome have not been fully understood at the molecular level. To elucidate the molecular mechanisms, a high-throughput bacterial transcriptomics study was conducted, and the gene expression profiles of six common oral bacteria, including two Gram-positive bacteria (, ) and four Gram-negative bacteria (, , , and ), were analyzed.

View Article and Find Full Text PDF

Microbial DNA Profiles of Bacterial Extracellular Vesicles from 3D Salivary Polymicrobial Biofilms - A Pilot Study.

Adv Healthc Mater

January 2025

School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Epigenetics nanodiagnostic and therapeutic group, The University of Queensland, Brisbane, QLD, 4006, Australia.

With the advent of multi-layered and 3D scaffolds, the understanding of microbiome composition and pathogenic mechanisms within polymicrobial biofilms is continuously evolving. A fundamental component in mediating the microenvironment and bacterial-host communication within the biofilm are bilayered nanoparticles secreted by bacteria, known as bacterial extracellular vesicles (BEVs), which transport key biomolecules including proteins, nucleic acids, and metabolites. Their characteristics and microbiome profiles are yet to be explored in the context of in vitro salivary polymicrobial biofilm.

View Article and Find Full Text PDF

Differential gene expression profile in treated human gingival keratinocytes and their role in the development of HNSCC.

J Oral Biol Craniofac Res

December 2024

Clinical Genetics Lab, Centre for Cellular and Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences [SIMATS], Saveetha University, Chennai, India.

Background: Periodontitis is considered to be one of the major risk factors associated with cancers of the oral cavity. Periodontogenic pathogens such as and are the important pathogens associated with periodontitis. Chronic exposure to bacterial components induces changes in the nearby cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!