Podocalyxin-like protein 1 functions as an immunomodulatory molecule in breast cancer cells.

Cancer Lett

Regulation of the Immune System Group, BioCruces Health Research Institute, Hospital Universitario Cruces, Barakaldo, Bizkaia, Spain. Electronic address:

Published: November 2015

Podocalyxin-like protein 1 (PCLP1), a CD34-related sialomucin involved in the regulation of cellular morphology and adhesion, is expressed by a number of normal cells and various tumor cells. In breast malignancies PCLP1 overexpression has been associated with the most aggressive, metastatic cancers and poor prognosis. These observations suggest that PCLP1 expression could provide a mechanism to evade the immune response, thereby promoting metastatic progression of cancer. In the present work, we aimed to determine the effect of PCLP1 overexpressed in MCF7 breast cancer cells on natural killer (NK) cell cytotoxicity, dendritic cell maturation, and agonist-induced T cell proliferation. The results showed that PCLP1 expressed in MCF7 breast cancer cells confers resistance to NK cell-mediated cytolysis and impairs T cell proliferation. Furthermore, PCLP1 decreased the levels of NK cell activating receptors NKG2D, NKp30, NKp44, NKp46, DNAM-1, and CD16 on cell surface in a contact-dependent manner. Moreover, NK cells acquired PCLP1 from MCF7 cells by a process known as trogocytosis. These data reveal a new function of PCLP1 expressed on tumor cells as an immunomodulatory molecule, which may represent a mechanism to evade the immune response.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2015.06.029DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
cancer cells
12
podocalyxin-like protein
8
immunomodulatory molecule
8
cells
8
pclp1
8
tumor cells
8
mechanism evade
8
evade immune
8
immune response
8

Similar Publications

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.

Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Sarcopenia as a Prognostic Factor and Multimodal Interventions in Breast Cancer.

Int J Gen Med

December 2024

Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.

Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!