Background And Purpose: 7-[2-[4-(2-Chlorophenyl)piperazinyl]ethyl]-1,3-dimethylxanthine (KMUP-1) is a xanthine-based derivative. It has soluble GC activation and K(+) -channel opening activity. Effects of this compound on ion currents in pituitary GH3 cells were investigated in this study.
Experimental Approach: The aim of this study was to evaluate effects of KMUP-1 on the amplitude and gating of voltage-gated Na(+) current (INa ) in pituitary GH3 cells and in HEKT293T cells expressing SCN5A. Both the amplitude of Ca(2+) -activated K(+) current and the activity of large-conductance Ca(2+) -activated K(+) (BKCa ) channels were also studied.
Key Results: KMUP-1 depressed the transient and late components of INa with different potencies. The IC50 values required for its inhibitory effect on transient and late INa were 22.5 and 1.8 μM respectively. KMUP-1 (3 μM) shifted the steady-state inactivation of INa to a hyperpolarized potential by -10 mV, despite inability to alter the recovery of INa from inactivation. In cell-attached configuration, KMUP-1 applied to bath increased BKCa -channel activity; however, in inside-out patches, this compound applied to the intracellular surface had no effect on it. It prolonged the latency in the generation of action currents elicited by triangular voltage ramps. Additionally, KMUP-1 decreased the peak INa with a concomitant increase of current inactivation in HEKT293T cells expressing SCN5A.
Conclusions And Implications: Apart from activating BKCa channels, KMUP-1 preferentially suppresses late INa . The effects of KUMP-1 on ion currents presented here constitute an underlying ionic mechanism of its actions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687803 | PMC |
http://dx.doi.org/10.1111/bph.13276 | DOI Listing |
Theranostics
January 2025
Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
: The periaqueductal gray (PAG) is a central hub for the regulation of aggression, whereas the circuitry and molecular mechanisms underlying this regulation remain uncharacterized. In this study, we investigate the role of a distinct cell type, -expressing (Tac2) neurons, located in the dorsomedial PAG (dmPAG) and their modulation of aggressive behavior in mice. : We combined activity mapping, Ca recording, chemogenetic and pharmacological manipulation, and a viral-based translating ribosome affinity purification (TRAP) profiling using a mouse resident-intruder model.
View Article and Find Full Text PDFTheranostics
January 2025
Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, China.
Tumor-associated macrophages (TAMs) are abundant in colorectal cancer (CRC), correlating with immunosuppression and disease progression. Activation of the stimulator of interferon gene (STING) signaling pathway in TAMs offers a promising approach for CRC therapy. However, current STING agonists face challenges related to tumor specificity and administration routes.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.
Transient receptor potential canonical 1 (TRPC1) channel, a Ca-permeable ion channel widely expressed in vasculature, has been reported to be involved in various cardiovascular disorders. However, the pathophysiological function of vascular smooth muscle cell (VSMC)-derived TRPC1 in hypertension and hypertensive cardiovascular remodeling remains to be defined. In this study, we found increased TRPC1 expression in both angiotensin II (AngII)-treated VSMCs and aortas from AngII-infused mice.
View Article and Find Full Text PDFProg Neurobiol
December 2024
Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712; Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712. Electronic address:
Hippocampal region CA2 is essential for social memory processing. Interaction with social stimuli induces changes in CA2 place cell firing during active exploration and sharp wave-ripples during rest following a social interaction. However, it is unknown whether these changes in firing patterns are caused by integration of multimodal social stimuli or by a specific sensory modality associated with a social interaction.
View Article and Find Full Text PDFPharmacol Res
December 2024
Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany; Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Str. 11, 44139 Dortmund, Germany; Comprehensive Heart Failure Center, University Hospital of Würzburg, Am Schwarzenberg 15, 97078 Würzburg, Germany. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!