Hypoxia/reoxygenation (H/R) injury of cholangiocytes causes serious biliary complications during hepatobiliary surgeries. Molecular hydrogen (H2) has been shown to be effective in protecting various cells and organs against oxidative stress injury. Human liver cholangiocytes were used to determine the potential protective effects of hydrogen against cholangiocyte H/R injury and explore the underlying mechanisms. We found that H2 ameliorated H/R-induced cholangiocytes apoptosis. Our study revealed that H2 activated NF-E2-related factor 2 (Nrf2) and downstream cytoprotective protein expression. However, the protective function of H2 was abolished when Nrf2 was silenced. Apoptosis in cholangiocytes isolated from a rat model of liver ischemia/reperfusion injury indicated that H2 significantly attenuates ischemia/reperfusion cholangiocyte injury in vivo. In conclusion, our study shows that H2 protects intrahepatic cholangiocytes from hypoxia/reoxygenation-induced apoptosis in vitro or in vivo, and this phenomenon may depend on activating Nrf2 expression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2015.08.010DOI Listing

Publication Analysis

Top Keywords

molecular hydrogen
8
intrahepatic cholangiocytes
8
activating nrf2
8
nrf2 expression
8
h/r injury
8
injury
6
cholangiocytes
6
hydrogen attenuates
4
attenuates hypoxia/reoxygenation
4
hypoxia/reoxygenation injury
4

Similar Publications

Interfacial engineering-induced electronic state modulation in Ru/MoS heterostructures for efficient hydrogen evolution reaction.

Chem Commun (Camb)

January 2025

Key Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.

In traditional binary heterojunction catalysts, mismatched energy band structures lead to higher electron transfer barriers. By reducing the work function difference a ternary Ru-RuS/MoS heterostructure, we developed a HER catalyst with remarkable activity (17 mV@10 mA cm) and excellent stability (300 h@500 mA cm).

View Article and Find Full Text PDF

Hydrogen evolution from water, catalyzed by solar energy, is a promising yet challenging endeavor. Small-sized catalysts usually exhibit high utilization and high performance in the hydrogen evolution field. However, the high surface energy tends to make them aggregate.

View Article and Find Full Text PDF

The CFH group can act as a hydrogen bond donor, serving as a potential surrogate for OH or SH groups but with a weaker hydrogen bond donation ability. Here, we describe a series of CFH group-containing moieties that facilitate hydrogen bond interactions. We survey hydrogen bond donation ability using several established methods, including H NMR-based hydrogen bond acidity determination, UV-vis spectroscopy titration with Reichardt's dye, and H NMR titration using tri--butylphosphine oxide as a hydrogen bond acceptor.

View Article and Find Full Text PDF

Understanding the oxygen reduction reaction (ORR) mechanism and accurately characterizing the reaction interface are essential for improving fuel cell efficiency. We developed an active learning framework combining machine learning force fields and enhanced sampling to explore the dynamics and kinetics of the ORR on Fe-N/C using a fully explicit solvent model. Different possible reaction paths have been explored and the O adsorption process is confirmed as the rate-determining step of the ORR at the Fe-N/C-water interface, which needs to overcome a free energy barrier of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!