Direct Evaluation of the Quantum Confinement Effect in Single Isolated Ge Nanocrystals.

J Phys Chem Lett

Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive NW, Edmonton, Alberta T6G 2G2, Canada.

Published: September 2015

To address the yet open question regarding the nature of quantum confinement in Ge nanocrystals (Ge NCs) we employed scanning tunneling spectroscopy to monitor the electronic structure of individual isolated Ge NCs as a function of their size. The (single-particle) band gaps extracted from the tunneling spectra increase monotonically with decreasing nanocrystal size, irrespective of the capping ligands, manifesting the effect of quantum confinement. Band-gap widening of ∼1 eV with respect to the bulk value was observed for Ge-NCs 3 nm in diameter. The picture emerging from comparison with theoretical calculations and other experimental results is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.5b01541DOI Listing

Publication Analysis

Top Keywords

quantum confinement
12
direct evaluation
4
evaluation quantum
4
confinement single
4
single isolated
4
isolated nanocrystals
4
nanocrystals address
4
address open
4
open question
4
question nature
4

Similar Publications

We report the results of calculations of the linear polarizability and second hyperpolarizability of the H molecule in the bond dissociation process. These calculations were performed for isolated molecules, as well as molecules under spatial confinement. The spatial confinement was modeled using the external two-dimensional (cylindrical) harmonic oscillator potential.

View Article and Find Full Text PDF

Flat bands in Kagome graphene might host strong electron correlations and frustrated magnetism upon electronic doping. However, the porous nature of Kagome graphene opens a semiconducting gap due to quantum confinement, preventing its fine-tuning by electrostatic gates. Here we induce zero-energy states into a semiconducting Kagome graphene by inserting π-radicals at selected locations.

View Article and Find Full Text PDF

Air-stable single-molecule magnets (SMMs) can be obtained by confining Dy ion in a coordination environment; however, most of the current efforts were focused on modifying the rigidity of the macrocycle ligand. Herein, we attempt to assemble air-stable SMMs based on macrocycles with a replaceable coordination site. By using an in situ 1 + 1 Schiff-base reaction of dialdehyde with diamine, three air-stable SMMs have been obtained in which one of the equatorial coordination sites can be varied from -NH- (for ), -O- (for ), and -NMe- (for ).

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) exhibit unique properties and potential applications when reduced to one-dimensional (1D) nanoribbons (NRs), owing to quantum confinement and high edge densities. However, effective growth methods for self-aligned TMD NRs are still lacking. We demonstrate a versatile approach for lattice-guided growth of dense, aligned MoS NR arrays via chemical vapor deposition (CVD) on anisotropic sapphire substrates, without tailored surface steps.

View Article and Find Full Text PDF

Electronic confinement induced quantum dot behavior in magic-angle twisted bilayer graphene.

Nanoscale

January 2025

Transport at Nanoscale Interfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland.

Magic-angle twisted bilayer graphene (TBLG) has emerged as a versatile platform to explore correlated electron phases driven primarily by low-energy flat bands in moiré superlattices. While techniques for controlling the twist angle between graphene layers have spurred rapid experimental progress, understanding the effects of doping inhomogeneity on electronic transport in correlated electron systems remains challenging. In this work, we investigate the interplay of confinement and doping inhomogeneity on the electrical transport properties of TBLG by leveraging device dimensions and twist angles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!