Symbolic representation of propulsion cycles in manual wheelchair locomotion.

Comput Methods Biomech Biomed Engin

a LIMOS , Clermont Université, Université Blaise Pascal, Clermont-Ferrand.

Published: January 2016

Download full-text PDF

Source
http://dx.doi.org/10.1080/10255842.2015.1069627DOI Listing

Publication Analysis

Top Keywords

symbolic representation
4
representation propulsion
4
propulsion cycles
4
cycles manual
4
manual wheelchair
4
wheelchair locomotion
4
symbolic
1
propulsion
1
cycles
1
manual
1

Similar Publications

We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination.

View Article and Find Full Text PDF

More Than the Sum of Its Parts: Disrupted Core Periphery of Multiplex Brain Networks in Multiple Sclerosis.

Hum Brain Mapp

January 2025

Queen Square Multiple Sclerosis Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK.

Disruptions to brain networks, measured using structural (sMRI), diffusion (dMRI), or functional (fMRI) MRI, have been shown in people with multiple sclerosis (PwMS), highlighting the relevance of regions in the core of the connectome but yielding mixed results depending on the studied connectivity domain. Using a multilayer network approach, we integrated these three modalities to portray an enriched representation of the brain's core-periphery organization and explore its alterations in PwMS. In this retrospective cross-sectional study, we selected PwMS and healthy controls with complete multimodal brain MRI acquisitions from 13 European centers within the MAGNIMS network.

View Article and Find Full Text PDF

Animacy perception, the ability to discern living from non-living entities, is crucial for survival and social interaction, as it includes recognizing abstract concepts such as movement, purpose, and intentions. This process involves interpreting cues that may suggest the intentions or actions of others. It engages the temporal cortex (TC), particularly the superior temporal sulcus (STS) and the adjacent region of the inferior temporal cortex (ITC), as well as the dorsomedial prefrontal cortex (dmPFC).

View Article and Find Full Text PDF

Computational modeling of neurodynamical systems often deploys neural networks and symbolic dynamics. One particular way for combining these approaches within a framework called leads to neural automata. Specifically, neural automata result from the assignment of symbols and symbol strings to numbers, known as Gödel encoding.

View Article and Find Full Text PDF

Modelling neural probabilistic computation using vector symbolic architectures.

Cogn Neurodyn

December 2024

Centre for Theoretical Neuroscience, University of Waterloo, 200 University Ave., Waterloo, ON N2L 3G1 Canada.

Distributed vector representations are a key bridging point between connectionist and symbolic representations in cognition. It is unclear how uncertainty should be modelled in systems using such representations. In this paper we discuss how bundles of symbols in certain Vector Symbolic Architectures (VSAs) can be understood as defining an object that has a relationship to a probability distribution, and how statements in VSAs can be understood as being analogous to probabilistic statements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!