We suggest a technique for constructing lower (existence) bounds for the fault-tolerant threshold to scalable quantum computation applicable to degenerate quantum codes with sublinear distance scaling. We give explicit analytic expressions combining probabilities of erasures, depolarizing errors, and phenomenological syndrome measurement errors for quantum low-density parity-check codes with logarithmic or larger distances. These threshold estimates are parametrically better than the existing analytical bound based on percolation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.115.050502 | DOI Listing |
Commun Phys
January 2025
Accelerator Laboratory, Department of Physics, University of Jyväskylä, Jyväskylä, Finland.
Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in Pb.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
Institute for Advanced Study, Tsinghua University, Beijing 100084, China.
In closed systems, the celebrated Lieb-Schultz-Mattis (LSM) theorem states that a one-dimensional locally interacting half-integer spin chain with translation and spin rotation symmetries cannot have a non-degenerate gapped ground state. However, the applicability of this theorem is diminished when the system interacts with a bath and loses its energy conservation. In this letter, we propose that the LSM theorem can be revived in the entanglement Hamiltonian when the coupling to the bath renders the system short-range correlated.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Physics, Indian Institute of Technology Hyderabad, Kandi, Medak 502 284, Telangana, India.
The topological properties of the A15-type compound TiPd reveal a complex landscape of multi-fold fermionic and bosonic states, as uncovered through calculations within the framework of density functional theory (DFT). The electronic band structure shows multi-fold degenerate crossings at the high-symmetry point R near the Fermi level, which evolves into 4-fold and 8-fold degenerate fermionic states upon the introduction of spin-orbit coupling (SOC). Likewise, the phononic band structure features multi-fold degenerate bosonic crossings at the same R point.
View Article and Find Full Text PDFACS Nano
January 2025
School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India.
Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFeCoGe.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
We report a new NMR method for treating two-site chemical exchange involving half-integer quadrupolar nuclei in a solution. The new method was experimentally verified with extensive Na ( = 3/2), K ( = 3/2), and Rb ( = 3/2) NMR results from alkali metal ions (Na, K, and Rb) in a solution over a wide range of molecular tumbling conditions. In the fast-motion limit, all allowed single-quantum NMR transitions for a particular quadrupolar nucleus are degenerate giving rise to one Lorentzian signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!