Thermocapillary (Marangoni) convection in a thin film on a plate oscillating with a frequency ranging from ultralow to high is considered. By adjusting the vibration amplitude, the impact of the vibration is kept non-negligible. Using the long-wave approximation framework, the amplitude equations are derived for each frequency interval, and linear and weakly nonlinear stability analyses are performed, supplemented by computations where necessary. In the case of a high vibration frequency, the surface tension effectively increases due to vibration, but the film still ruptures. When the frequency is ultralow, the vibration provides gravity modulation, and the surface deformation emerges subcritically, grows fast, and then decays, all during less than half of the vibration period. In the intermediate regime, the vibration either results in a short-wavelength instability or it does not affect the Marangoni convection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.92.013019 | DOI Listing |
Adv Mater
January 2025
Institute for Advanced Materials & Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China.
Laboratory-scale spin-coating techniques are widely employed for fabricating small-size, high-efficiency perovskite solar cells. However, achieving large-area, high-uniformity perovskite films and thus high-efficiency solar cell devices remain challenging due to the complex fluid dynamics and drying behaviors of perovskite precursor solutions during large-area fabrication processes. In this work, a high-quality, pinhole-free, large-area FAPbI perovskite film is successfully obtained via scalable blade-coating technology, assisted by a novel bidirectional Marangoni convection strategy.
View Article and Find Full Text PDFSci Rep
January 2025
Civil Engineering Department, Kardan University, Kabul, Afghanistan.
The current research deals with analytical analysis of Marangoni convection on ethylene glycol base hybrid nanofluid two-dimension flow with viscous dissipation through a porous medium, which have some important application in mechanical, civil, electronics, and chemical engineering. Two types of nanoparticles one is sliver and other is graphene oxide and ethylene glycol is used as base fluid in this research work. The authors applied appropriate transformations to convert a collection of dimension form of nonlinear partial differential equations to dimensionless form of nonlinear ordinary differential equations.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Nonlinear Physical Chemistry Unit, Service de Chimie Physique et Biologie Théorique, Université libre de Bruxelles (ULB), CP 231 - Campus Plaine, 1050 Brussels, Belgium.
Exotic dynamics, previously associated only with reactions involving complex kinetics, have been observed even with simple bimolecular reactions A + B → C, when coupled with hydrodynamical flows. Numerical studies in two-dimensional reactors have shown that oscillatory dynamics can emerge from an antagonistic coupling between chemically-driven buoyancy and Marangoni convective flows, induced by changes in density and surface tension, respectively, as the reaction occurs. Here, we investigate reactions increasing both surface tension and density, leading to a cooperative coupling between the flows and show how, in this configuration, buoyancy-driven contribution dampens spatio-temporal oscillations of concentration.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China.
Laser-induced crystallization through optical trapping offers precise and spatiotemporal control of crystallization kinetics at the microscale region. Here, we demonstrate the optical trapping-induced crystallization of various amino acids, including glycine, l-cysteine, and l-alanine, by focusing a 532 nm continuous-wave laser in amino acid/HO solution. The coordinated effect of optical forces and heat-driven molecular delivery improves the local molecular concentration, leading to nucleation and subsequent crystal growth.
View Article and Find Full Text PDFMater Horiz
December 2024
North Carolina State University, Department of Materials Science & Engineering, Raleigh, NC 27695, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!