AI Article Synopsis

Article Abstract

Star polymers provide model architectures to understand the dynamic and rheological effects of chain confinement for a range of complex topological structures like branched polymers, colloids, and micelles. It is important to describe the structure of such macromolecular topologies using small-angle neutron and x-ray scattering to facilitate understanding of their structure-property relationships. Modeling of scattering from linear, Gaussian polymers, such as in the melt, has applied the random phase approximation using the Debye polymer scattering function. The Flory-Huggins interaction parameter can be obtained using neutron scattering by this method. Gaussian scaling no longer applies for more complicated chain topologies or when chains are in good solvents. For symmetric star polymers, chain scaling can differ from ν=0.5(d(f)=2) due to excluded volume, steric interaction between arms, and enhanced density due to branching. Further, correlation between arms in a symmetric star leads to an interference term in the scattering function first described by Benoit for Gaussian chains. In this work, a scattering function is derived which accounts for interarm correlations in symmetric star polymers as well as the polymer-solvent interaction parameter for chains of arbitrary scaling dimension using a hybrid Unified scattering function. The approach is demonstrated for linear, four-arm and eight-arm polyisoprene stars in deuterated p-xylene.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.92.012602DOI Listing

Publication Analysis

Top Keywords

symmetric star
16
star polymers
16
scattering function
16
interaction parameter
12
scattering
7
polymers
6
star
5
determination interaction
4
parameter topological
4
scaling
4

Similar Publications

The photopolymerization-induced microphase separation (photo-PIMS) process involving a reactive polymer block was implemented to fabricate nanostructured quasi-solid polymer electrolytes (QSPEs) for use in lithium metal batteries (LMBs). This innovative one-pot fabrication enhances interfacial properties in LMBs by enabling nanostructuring of QSPE directly onto the electrodes. This process also allows for customization of QSPE structural dimensions by tweaking the architecture and molar mass of poly[(oligo ethylene glycol) methyl ether methacrylate--styrene] (P(OEGMA--S)) macromolecular chain transfer agent.

View Article and Find Full Text PDF

Rounded shapes are associated with softness and warmth, whereas Platonic solids are associated with hardness and coldness. We investigated the temperature-shape association through sensorial/conceptual qualities of geometric ice-like textured shapes. In Experiment 1, participants viewed symmetrical rotating 3D shapes (five Platonic solids-cube, tetrahedron, octahedron, icosahedron, dodecahedron; a star polyhedron and a sphere) and control shapes (naturalistic and angular), rating them in terms of liking, hardness, temperature, wetness, and texture.

View Article and Find Full Text PDF

Aqueous zinc-ion batteries (ZIBs) are playing an increasingly important role in the field of energy storage owing to their low cost, high safety, and environmental friendliness. However, their practical applications are still handicapped by severe dendrite formation and side reactions (e.g.

View Article and Find Full Text PDF

Robust double machine learning model with application to omics data.

BMC Bioinformatics

November 2024

Department of Biostatistics, Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory for Health Technology Assessment, National Commission of Health, School of Public Health, Fudan University, Shanghai, China.

Background: Recently, there has been a growing interest in combining causal inference with machine learning algorithms. Double machine learning model (DML), as an implementation of this combination, has received widespread attention for their expertise in estimating causal effects within high-dimensional complex data. However, the DML model is sensitive to the presence of outliers and heavy-tailed noise in the outcome variable.

View Article and Find Full Text PDF

Sulfurized Composite Interphase Enables a Highly Reversible Zn Anode.

Angew Chem Int Ed Engl

November 2024

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.

The stability and reversibility of Zn anode can be greatly improved by in situ construction of solid electrolyte interphase (SEI) on Zn surface via a low-cost design strategy of ZnSO electrolyte. However, the role of hydrogen bond acceptor -SO accompanying ZnS formation during SEI reconstruction is overlooked. In this work, we have explored and revealed the new role of -SO and ZnS in the in situ formed sulfide composite SEI (SCSEI) on Zn anode electrochemistry in ZnSO aqueous electrolytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!