Rotation-limited growth of three-dimensional body-centered-cubic crystals.

Phys Rev E Stat Nonlin Soft Matter Phys

Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.

Published: July 2015

According to classical grain growth laws, grain growth is driven by the minimization of surface energy and will continue until a single grain prevails. These laws do not take into account the lattice anisotropy and the details of the microscopic rearrangement of mass between grains. Here we consider coarsening of body-centered-cubic polycrystalline materials in three dimensions using the phase field crystal model. We observe, as a function of the quenching depth, a crossover between a state where grain rotation halts and the growth stagnates and a state where grains coarsen rapidly by coalescence through rotation and alignment of the lattices of neighboring grains. We show that the grain rotation per volume change of a grain follows a power law with an exponent of -1.25. The scaling exponent is consistent with theoretical considerations based on the conservation of dislocations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.92.012409DOI Listing

Publication Analysis

Top Keywords

grain growth
8
grain rotation
8
grain
6
rotation-limited growth
4
growth three-dimensional
4
three-dimensional body-centered-cubic
4
body-centered-cubic crystals
4
crystals classical
4
classical grain
4
growth laws
4

Similar Publications

Temperature Dependence on Microstructure, Crystallization Orientation, and Piezoelectric Properties of ZnO Films.

Sensors (Basel)

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

This study has investigated the effects of different annealing temperatures on the microstructure, chemical composition, phase structure, and piezoelectric properties of ZnO films. The analysis focuses on how annealing temperature influences the oxygen content and the preferred c-axis (002) orientation of the films. It was found that annealing significantly increases the grain size and optimizes the columnar crystal structure, though excessive high-temperature annealing leads to structural degradation.

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

Plant growth and development require water, but excessive water hinders growth. Sesame ( L.) is an important oil crop; it is drought-tolerant but sensitive to waterlogging, and its drought tolerance has been extensively studied.

View Article and Find Full Text PDF

The gene family is a highly conserved transcription factor that plays a crucial role in regulating plant growth, development, and responses to various stresses. Despite extensive studies in multiple plants, there has been a dearth of focused and systematic analysis on NF-YA genes in wheat grains. In this study, we carried out a comprehensive bioinformatics analysis of the gene family in wheat, using the latest genomic data from the Chinese Spring.

View Article and Find Full Text PDF

This paper reviews recent advances in the synthesis of cobalt-free high-strength tungsten carbide (WC) composites as sustainable alternatives to conventional WC-Co composites. Due to the high cost of cobalt, limited supply, and environmental concerns, researchers are exploring nickel, iron, ceramic binders, and nanocomposites to obtain similar or superior mechanical properties. Various synthesis methods such as powder metallurgy, encapsulation, 3D printing, and spark plasma sintering (SPS) are discussed, with SPS standing out for its effectiveness in densifying and preventing WC grain growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!