Spectroelectrochemistry of Silver Deposition on Single Gold Nanocrystals.

J Phys Chem Lett

‡School of Chemistry and Bio21 Institute, University of Melbourne, Parkville, Victoria 3010, Australia.

Published: December 2014

We report the electrodeposition of metallic silver onto gold nanostars adsorbed to ITO electrodes. The electrochemical process was studied at the single particle level by correlated in situ dark field spectroscopy and scanning electron microscopy (SEM). Underpotential deposition avoids bulk silver formation on the ITO substrates. SEM proves that deposition occurs on all surfaces of the gold nanostars when polyvinylpyrrolidone (PVP) is stabilizing the nanostars or preferentially at the nanostar tips when the ligand is removed. The surface plasmon resonance blue-shifts by more than 100 nm following the formation of a 5 nm Ag film on PVP stabilized gold nanostars, moving the scattered color from the near-infrared to red or orange. The spectral shifts can be accurately modeled using finite element simulations. These results demonstrate that the morphology and composition of individual bimetallic nanocrystals can be engineered electrochemically.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz502349xDOI Listing

Publication Analysis

Top Keywords

gold nanostars
12
spectroelectrochemistry silver
4
silver deposition
4
deposition single
4
gold
4
single gold
4
gold nanocrystals
4
nanocrystals report
4
report electrodeposition
4
electrodeposition metallic
4

Similar Publications

Expression of concern: Electrochemical genosensor based on gold nanostars for the detection of O157:H7 DNA.

Anal Methods

January 2025

Physics and Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrköping, Sweden.

Expression of concern for 'Electrochemical genosensor based on gold nanostars for the detection of O157:H7 DNA' by Nasrin Razmi , , 2022, , 1562-1570, https://doi.org/10.1039/D2AY00056C.

View Article and Find Full Text PDF

Programmable DNA Nanoswitch-Regulated Plasmonic CRISPR/Cas12a-Gold Nanostars Reporter Platform for Nucleic Acid and Non-Nucleic Acid Biomarker Analysis Assisted by a Spatial Confinement Effect.

Nano Lett

January 2025

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

CRISPR/Cas 12a system based nucleic acid and non-nucleic acid targets detection faces two challenges including (1) multiple crRNAs are needed for multiple biomarkers detection and (2) insufficient sensitivity resulted from photobleaching of fluorescent dyes and the low kinetic cleavage rate for a traditional single-strand (ssDNA) reporter. To address these limitations, we developed a programmable DNA nanoswitch (NS)-regulated plasmonic CRISPR/Cas12a-gold nanostars (Au NSTs) reporter platform for detection of nucleic acid and non-nucleic acid biomarkers with the assistance of the spatial confinement effect. Through simply programming the target recognition sequence in NS, only one crRNA is required to detect both nucleic acid and non-nucleic acid biomarkers.

View Article and Find Full Text PDF

A dual-mode detection platform utilizing colorimetric and Raman was developed based on the exponential amplification reaction (EXPAR) strategy and a "core-satellite" structure constructed by bimetallic nanozymes to detect chloramphenicol (CAP). Initially, DNA-gated metal-organic frameworks (MOFs) incorporating cascaded amplification were used to be nanocarriers for the colorimetric and Raman reporter molecules (3,3',5,5'-tetramethylbiphenyl; TMB). Subsequently, assembled DNA served as gatekeepers to create a stimulus-responsive DNA-gated MOF (TMB@DNA/MOF).

View Article and Find Full Text PDF

This study reports on the facile development of star-shaped gold nanoparticles via seed-mediated growth protocol. Gold nanostars (AuNSTs) demonstrated average particle size of 48 nm using transmission electron microscopy (TEM). Chemical composition of AuNSTs was verifired using energy dispersive X-ray spectroscopy (EDX) mapping.

View Article and Find Full Text PDF

Cancer is one of the most fatal diseases threatening public health globally, and tumor metastasis causes greater than 90 % of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of various human cancers. Cancer stem cells (CSCs) are a rare population of cancer cells and increasing evidences indicated CSCs are the driving force of tumor metastasis. In this study, a p-AuNSs-assisted single-cell Raman spectra has been established, to extract and amplify of CSCs fingerprints with single cell sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!