The atomic layer deposition (ALD) method was applied to grow thin polycrystalline BiFeO3 (BFO) films on Pt/SiO2/Si substrates. The 50 nm thick films were found to exhibit high resistivity, good morphological integrity, and homogeneity achieved by the applied ALD technique. Magnetic characterization revealed saturated magnetization of 25 emu/cm(3) with temperature-dependent coercivity varying from 5 to 530 Oe within the temperature range from 300 to 2 K. Magnetism observed in the films was found to change gradually from ferromagnetic spin ordering to pinned magnetic domain interactions mixed with weak spin-glass-like behavior of magnetically frustrated antiferromagnetic/ferromagnetic (AFM-FM) spin ordering depending on the temperature and magnitude of the applied magnetic field. Antiferromagnetic order of spin cycloids was broken in polycrystalline films by crystal sizes smaller than the cycloid length (∼60 nm). Uncompensated spincycloids and magnetic domain walls were found to be the cause of the high magnetization of the BFO films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jz502285f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!