Enhancing the Performance of Sensitized Solar Cells with PbS/CH3NH3PbI3 Core/Shell Quantum Dots.

J Phys Chem Lett

†Department of Energy Science, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 440-746, Republic of Korea.

Published: June 2014

Unlabelled: We report on the fabrication of PbS/CH3NH3PbI3 (=MAP) core/shell quantum dot (QD)-sensitized inorganic-organic heterojunction solar cells on top of mesoporous (mp) TiO2 electrodes with hole transporting polymers (P3HT and

Pedot: PSS). The PbS/MAP core/shell QDs were in situ-deposited by a modified successive ionic layer adsorption and reaction (SILAR) process using PbI2 and Na2S solutions with repeated spin-coating and subsequent dipping into CH3NH3I (=MAI) solution in the final stage. The resulting device showed much higher efficiency as compared to PbS QD-sensitized solar cells without a MAP shell layer, reaching an overall efficiency of 3.2% under simulated solar illumination (AM1.5, 100 mW·cm(-2)). From the measurement of the impedance spectroscopy and the time-resolved photoluminescence (PL) decay, the significantly enhanced performance is mainly attributed to both reduced charge recombination and better charge extraction by MAP shell layer. In addition, we demonstrate that the MAP shell effectively prevented the photocorrosion of PbS, resulting in highly improved stability in the cell efficiency with time. Therefore, our approach provides method for developing high performance QD-sensitized solar cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jz500815hDOI Listing

Publication Analysis

Top Keywords

solar cells
16
map shell
12
core/shell quantum
8
qd-sensitized solar
8
shell layer
8
solar
5
enhancing performance
4
performance sensitized
4
sensitized solar
4
cells
4

Similar Publications

Electronic devices cover a large subset of daily life gadgets which use power to run, hence increasing the load of the energy needs and indirectly impacting greenhouse gas emissions. Smart electrochromic windows provide a solution to this through remarkable energy saving by adjusting optical behavior depending on the environmental conditions. Since the electrochromic windows also need power to run, a self-powered electrochromic panel will be a better solution.

View Article and Find Full Text PDF

Microelectronic Structure and Doping Nonuniformity of Phosphorus-Doped CdSeTe Solar Cells.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device.

View Article and Find Full Text PDF

Context: Exploration for renewable and environmentally friendly energy sources has become a major challenge to overcome the depletion of fossil fuels and their environmental hazards. Therefore, solar cell technology, as an alternative solution, has attracted the interest of many researchers. In the present work, the CsXInBr (X = Cu or Ag) compounds as lead-free halide perovskites have been studied due to their direct energy gap in the range of solar energy, thermodynamic stability, low effective mass of electrons, and high absorption coefficient.

View Article and Find Full Text PDF

Life cycle assessment of lead recycling processes in perovskite solar cells.

Chem Commun (Camb)

January 2025

School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Republic of Korea.

Life cycle assessment (LCA) was employed to evaluate the environmental impacts of various lead (Pb) recycling processes in perovskite solar cells (PSCs). The analysis identifies solvent recovery and reuse as critical factors in reducing environmental harm, highlighting the need for optimized recycling methods to enhance the sustainability of PSCs.

View Article and Find Full Text PDF

Interest in organic solar cells (OSCs) is constantly rising in the field of photovoltaic devices. The device performance relies on the bulk heterojunction (BHJ) nanomorphology, which develops during the drying process and additional post-treatment. This work investigates the effect of thermal annealing (TA) on the all-small molecule DRCN5T:PCBM blend with phase field simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!