Osteoporosis is a disease that decreases bone mass. The number of patients with osteoporosis has been increasing, including an increase in patients with bone fractures, which lead to higher medical costs. Osteoporosis treatment is all-important in preventing bone loss. One strategy for osteoporosis treatment is to inhibit osteoclastogenesis. Osteoclasts are bone-resorbing multinucleated cells, and overactive osteoclasts and/or their increased number are observed in bone disorders including osteoporosis and rheumatoid arthritis. Bioactivity-guided fractionations led to the isolation of alisol A 24-acetate from the dried tuber of Alisma canaliculatum. Alisol A 24-acetate inhibited RANKL-mediated osteoclast differentiation by downregulating NFATc1, which plays an essential role in osteoclast differentiation. Furthermore, it inhibited the expression of DC-STAMP and cathepsin K, which are related to cell-cell fusion of osteoclasts and bone resorption, respectively. Therefore, alisol A 24-acetate could be developed as a new structural scaffold for inhibitors of osteoclast differentiation in order to develop new drugs against osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530244PMC
http://dx.doi.org/10.1155/2015/132436DOI Listing

Publication Analysis

Top Keywords

alisol 24-acetate
16
osteoclast differentiation
12
alisma canaliculatum
8
osteoporosis treatment
8
osteoporosis
6
bone
5
inhibitory alisol
4
24-acetate
4
24-acetate alisma
4
canaliculatum osteoclastogenesis
4

Similar Publications

Introduction: Osteoarthritis is a degenerative knee joint disease featured with articular cartilage degeneration and inflammation. Alisol A 24-acetate (ALA-24A) is an active triterpene that has antioxidant and anti-inflammatory pharmacological properties. However, its effect and molecular mechanism on osteoarthritis progression have not been reported.

View Article and Find Full Text PDF

Pharmacological Properties and Molecular Targets of Alisol Triterpenoids from Rhizoma.

Biomedicines

August 2022

OncoWitan, Scientific Consulting Office, 59290 Lille (Wasquehal), France.

More than 100 protostane triterpenoids have been isolated from the dried rhizomes of species, designated rhizoma (AR), commonly used in Asian traditional medicine to treat inflammatory and vascular diseases. The main products are the alisols, with the lead compounds alisol-A/-B and their acetate derivatives being the most abundant products in the plant and the best-known bioactive products. The pharmacological effects of Ali-A, Ali-A 24-acetate, Ali-B, Ali-B 23-acetate, and derivatives have been analyzed to provide an overview of the medicinal properties, signaling pathways, and molecular targets at the origin of those activities.

View Article and Find Full Text PDF

Background: Neuroinflammation and apoptosis are involved in the pathogenesis of ischaemic stroke. Alisol A 24-acetate (24A) exerts a strong inhibitory effect on inflammation and cell apoptosis. The neuroprotective effect of 24A on global cerebral ischaemia/reperfusion (GCI/R) injury remains unclear.

View Article and Find Full Text PDF

Blood brain barrier (BBB) dysfunction developed with aging is related to brain microvascular endothelial cells (BMECs) injury and losses of tight junctions (TJs). In the present study, we found that Alisol A 24-acetate (AA), a natural compound frequently used as treatment against vascular diseases was essential for BMECs injury and TJs degradation. Our experimental results showed that AA enhanced cell viability and increased zonula occludens-1 (ZO-1), claudin-5, and occludin expression in the oxygen-glucose deprivation (OGD)-induced BMECs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!