Rapid detection of ermB gene in Clostridium difficile by loop-mediated isothermal amplification.

J Med Microbiol

Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Gastroenterology, 1838 North Guangzhou Ave, Guangzhou 510515, PR China.

Published: August 2015

Macrolide-lincosamide-streptogramin B resistance in Clostridium difficile is mostly due to the ermB resistance determinant. Here, we describe a sensitive and rapid molecular method to detect ermB in C. difficile to contribute to the wider epidemiological study. Five sets of loop-mediated isothermal amplification (LAMP) primers were designed and optimized for rapid detection of ermB. The specificity and sensitivity of the primers for ermB were detected, and the ermB LAMP assay was compared to conventional PCR with 80 clinical isolates of C. difficile. Real-time monitoring of turbidity and chromogenic reaction were used to determine negative and positive results. A total of 26 pathogenic bacterial strains of different species were found to be negative for ermB, which indicated the high specificity of the primers. ermB was detected in 78.8 % (63/80) of the clinical isolates by both LAMP and conventional PCR. The detection limit of LAMP was 36.1  pg DNA μl- 1 and its sensitivity was 10-fold greater than that of conventional PCR. This study is the first report regarding the development and application of the LAMP assay for detection of the ermB gene in C. difficile strains. The developed LAMP method is sensitive, specific and provides a user-friendly visual approach for the rapid detection of ermB-bearing C. difficile.

Download full-text PDF

Source
http://dx.doi.org/10.1099/jmm.0.000109DOI Listing

Publication Analysis

Top Keywords

rapid detection
12
detection ermb
12
conventional pcr
12
ermb
9
ermb gene
8
clostridium difficile
8
loop-mediated isothermal
8
isothermal amplification
8
primers ermb
8
ermb detected
8

Similar Publications

A label-free, flexible, and disposable aptasensor was designed for the rapid on-site detection of vancomycin (VAN) levels. The electrochemical sensor was based on lab-printed carbon electrodes (C-PE) enriched with cauliflower-shaped gold nanostructures (AuNSs), on which VAN-specific aptamers were immobilized as biorecognition elements and short-chain thiols as blocking agents. The AuNSs, characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), enhanced the electrochemical properties of the platform and the aptamer immobilization active sites.

View Article and Find Full Text PDF

A vision model for automated frozen tuna processing.

Sci Rep

January 2025

School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.

Accurate and rapid segmentation of key parts of frozen tuna, along with precise pose estimation, is crucial for automated processing. However, challenges such as size differences and indistinct features of tuna parts, as well as the complexity of determining fish poses in multi-fish scenarios, hinder this process. To address these issues, this paper introduces TunaVision, a vision model based on YOLOv8 designed for automated tuna processing.

View Article and Find Full Text PDF

The expansion of drone-based aerial imagery has facilitated an increase in data obtained from free-ranging marine mammal populations, in particular cetacean species. This non-invasive approach allows for body condition assessments, including nutritional and reproductive health. Yet, existing methods of image analysis are time-consuming and lack the granularity to determine early-stage pregnancies and miscarriage rates.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Background: α-Synuclein (α-Syn) pathology is present in 30-50 % of Alzheimer's disease (AD) patients, and its interactions with tau proteins may further exacerbate pathological changes in AD. However, the specific role of different aggregation forms of α-Syn in the progression of AD remains unclear.

Objectives: To explore the relationship between various aggregation types of CSF α-Syn and Alzheimer's disease progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!