Degenerate connective polypeptide 1 (CP1) domain from human mitochondrial leucyl-tRNA synthetase.

J Biol Chem

From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai and the School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, Shanghai 200031, China

Published: October 2015

The connective polypeptide 1 (CP1) editing domain of leucyl-tRNA synthetase (LeuRS) from various species either harbors a conserved active site to exclude tRNA mis-charging with noncognate amino acids or is evolutionarily truncated or lost because there is no requirement for high translational fidelity. However, human mitochondrial LeuRS (hmtLeuRS) contains a full-length but degenerate CP1 domain that has mutations in some residues important for post-transfer editing. The significance of such an inactive CP1 domain and a translational accuracy mechanism with different noncognate amino acids are not completely understood. Here, we identified the essential role of the evolutionarily divergent CP1 domain in facilitating hmtLeuRS's catalytic efficiency and endowing enzyme with resistance to AN2690, a broad-spectrum drug acting on LeuRSs. In addition, the canonical core of hmtLeuRS is not stringent for noncognate norvaline (Nva) and valine (Val). hmtLeuRS has a very weak tRNA-independent pre-transfer editing activity for Nva, which is insufficient to remove mis-activated Nva. Moreover, hmtLeuRS chimeras fused with a functional CP1 domain from LeuRSs of other species, regardless of origin, showed restored post-transfer editing activity and acquired fidelity during aminoacylation. This work offers a novel perspective on the role of the CP1 domain in optimizing aminoacylation efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591822PMC
http://dx.doi.org/10.1074/jbc.M115.672824DOI Listing

Publication Analysis

Top Keywords

cp1 domain
24
connective polypeptide
8
polypeptide cp1
8
human mitochondrial
8
leucyl-trna synthetase
8
noncognate amino
8
amino acids
8
post-transfer editing
8
editing activity
8
cp1
7

Similar Publications

The single-stranded RNA genome of SARS-CoV-2 encodes several structural and non-structural proteins, among which the papain-like protease (PLpro) is crucial for viral replication and immune evasion and has emerged as a promising therapeutic target. The current study aims to discover new inhibitors of PLpro that can simultaneously disrupt its protease and deubiquitinase activities. Using multiple computational approaches, six compounds (CP1-CP6) were selected from our in-house compounds database, with higher docking scores (-7.

View Article and Find Full Text PDF

Repurposing DrugBank compounds as potential Plasmodium falciparum class 1a aminoacyl tRNA synthetase multi-stage pan-inhibitors with a specific focus on mitomycin.

Int J Parasitol Drugs Drug Resist

August 2024

Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, 6139, South Africa. Electronic address:

Plasmodium falciparum aminoacyl tRNA synthetases (PfaaRSs) are potent antimalarial targets essential for proteome fidelity and overall parasite survival in every stage of the parasite's life cycle. So far, some of these proteins have been singly targeted yielding inhibitor compounds that have been limited by incidences of resistance which can be overcome via pan-inhibition strategies. Hence, herein, for the first time, we report the identification and in vitro antiplasmodial validation of Mitomycin (MMC) as a probable pan-inhibitor of class 1a (arginyl(A)-, cysteinyl(C), isoleucyl(I)-, leucyl(L), methionyl(M), and valyl(V)-) PfaaRSs which hypothetically may underlie its previously reported activity on the ribosomal RNA to inhibit protein translation and biosynthesis.

View Article and Find Full Text PDF

Cyclopeptides hold significant relevance in various fields of science and medicine, due to their unique structural properties and diverse biological activities. Cyclic peptides, characterized by intrinsically higher conformational order, exhibit remarkable stability and resistance to proteolytic degradation, making them attractive candidates for developing targeted drug delivery systems. The aim of this work is to elucidate the unique coordination properties of the multi-His cyclic peptide with c(HDHKHPHHKHHP) sequence (HDCP - heterodomain cyclopeptide).

View Article and Find Full Text PDF

Pharmacological blockade of TEAD-YAP reveals its therapeutic limitation in cancer cells.

Nat Commun

November 2022

Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, MA, USA.

Targeting TEAD autopalmitoylation has been proposed as a therapeutic approach for YAP-dependent cancers. Here we show that TEAD palmitoylation inhibitor MGH-CP1 and analogues block cancer cell "stemness", organ overgrowth and tumor initiation in vitro and in vivo. MGH-CP1 sensitivity correlates significantly with YAP-dependency in a large panel of cancer cell lines.

View Article and Find Full Text PDF

Recombinant human follicle stimulating hormone (r-hFSH) is widely used for infertility treatment and is subject to the development of biosimilars. There are different purification strategies that can yield r-hFSH of pharmaceutical quality from Chinese hamster ovary cell culture broth. We developed a purification process for r-hFSH centered on immunoaffinity chromatography with single-domain recombinant camelid antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!