Background And Objective: Cold-induced airway hyperresponsiveness (CAH) is common in bronchial asthma (BA) patients and represents a problem for those living in cold climate. Transient receptor potential melastatin 8 (TRPM8) channel is the main cold temperature sensor in humans that could mediate cold response in asthmatics with CAH. No associations between TRPM8 gene polymorphisms and CAH have been reported.

Methods: The present study involved 123 BA patients. CAH was assessed by 3-min isocapnic (5% CO2 ) cold air (-20°C) hyperventilation challenge. The c.750G > C (rs11562975), c.1256G > A (rs7593557), c.3048C > T (rs11563208) and c.3174C > G (rs11563071) polymorphisms of TRPM8 gene were genotyped by allele-specific polymerase chain reaction (PCR) and PCR with subsequent restriction fragment length polymorphism analysis.

Results: GC genotype and C allele carriers of the c.750G > C (rs11562975) polymorphism were more frequently observed to exhibit CAH. The estimated odds ratio for the GC genotype was 3.73 95%CI (1.48; 9.37), P = 0.005. Furthermore, GC heterozygotes had a prominent decrease in forced expiratory volume in 1 s after the challenge as compared to GG homozygotes (-12% (-16; -8.1) vs -6.45% (-11; -2.1), P < 0.001). GC carriers also had a marked reduction in other spirometric parameters.

Conclusions: The GC variant of the TRPM8:c.750G > C (rs11562975) polymorphism is associated with CAH in patients with BA, which suggests a potential role of TRPM8 in CAH development.

Download full-text PDF

Source
http://dx.doi.org/10.1111/resp.12605DOI Listing

Publication Analysis

Top Keywords

transient receptor
8
receptor potential
8
potential melastatin
8
polymorphism associated
8
cold-induced airway
8
airway hyperresponsiveness
8
bronchial asthma
8
trpm8 gene
8
c750g > c rs11562975
8
rs11562975 polymorphism
8

Similar Publications

The DAF-2/insulin/insulin-like growth factor signaling (IIS) pathway plays an evolutionarily conserved role in regulating reproductive development, life span, and stress resistance. In Caenorhabditis elegans, DAF-2/IIS signaling is modulated by an extensive array of insulin-like peptides (ILPs) with diverse spatial and temporal expression patterns. However, the release dynamics and specific functions of these ILPs in adapting to different environmental conditions remain poorly understood.

View Article and Find Full Text PDF

Transient Receptor Potential (TRP) channels are a family of ion channels that play pivotal roles in various physiological processes, including sensory transduction, temperature regulation, and inflammation. In the context of dentistry, recent research has highlighted the involvement of TRP channels in mediating sensory responses and inflammation in dental tissues and temporo-mandibular joint (TMJ) structure. TRP channels have emerged as major contributors in the development of inflammatory conditions and pain affecting the oral cavity and related structures, such as periodontitis, dental erosion cause hypersensitivity, pulpitis, and TMJ disorders.

View Article and Find Full Text PDF

Delayed radiation-induced brain injury (RIBI) characterized by progressive cognitive decline significantly impacts patient outcomes after radiotherapy. The activation of NLRP3 inflammasome within microglia after brain radiation is involved in the progression of RIBI by mediating inflammatory responses. We have previously shown that sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) mediates microglial NLRP3-related inflammation following global brain ischemia.

View Article and Find Full Text PDF

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!